
Precise and Scalable Points-to Analysis via
Data-Driven Context Tunneling

Minseok Jeon, Sehun Jeong, and Hakjoo Oh

I. Problem of Most-recent-k
Context Abstraction

• Most-recent-k policy often
abandons important context
elements

Motivating Example
• Two may-fail casting queries, which

are safe

• main calls identity function id twice

• Value of i is unknown

• id calls itself i+1 times recursively

Conventional K-CFA
• k-call-site-sensitivity fails to prove

the queries no matter what k value is
used

• Since the i is unbounded, analysis
eventually losses important contexts
8 and 9, becomes imprecise

II. Our Approach:
Context Tunneling

• Do not keep most-recent-k

• Instead, keep most-important-k

1-CFA with Context Tunneling
• Proves all the queries

• With context tunneling, method calls

selectively update callee context

• When id calls id at line 4, callee

method does not update context but
inherit context from caller’s (e.g.,
context tunneling is applied)

Challenge
• It is difficult to know right places for

applying context tunneling (i.e., id
called in id)

• Wrong choices of context tunneling
may result imprecise and expensive
analysis

III. Data-Driven
Context Tunneling

Tunneling Heuristic
• A set of relations T between two

methods

• T means when contexts should not
be updated

• Method m is called under its parent
method p

• Callee context is constructed as
follows:

Learning Model for Tunneling
• Two boolean formulas <f1, f2> is our

model’s parameter

• Given parameter, the model

generates the tunneling relation for a
target program as follows:

Learning Problem
Find parameter <f1, f2> that maximizes
analysis precision while it is scalable
than <false, false> (i.e., without
tunneling) over training programs.

Precise and Scalable Points-to Analysis via
Data-Driven Context Tunneling

Minseok Jeon, Sehun Jeong, and Hakjoo Oh

Problem of Most Recent K
Context Abstraction

• Most-recent-k policy often abandons important con-
text elementsProblem of Most Recent K

: useless

: important

concrete context:

abstract context:
k = 3

wasted!

•Most-recent-k often abandons important context
elements

!1

most recent

Motivating Example

• Two may-fail casting queries, which are safe
•main calls identity function id twice
•id calls itself i-1 times recursively

1 class A{} class B{}

2 class C{

3 static Object id(Object v, int i){

4 return i >= 0 ? id(v, i-1): v;

5 }

6 public static void main(){

7 int i = input();

8 A a = (A) id(new A(),i);//query1

9 B b = (B) id(new B(),i);//query2

10 }

11 }

Conventional K-CFA

The conventional k-call-site-sensitive analysis fails to
prove the queries no matter what k value is used.

Context Tunneling

1-CFA with Context Tunneling

With context tunneling, 1-CFA can prove the queries.
In the example, when id calls id at invocation 4, callee
method does not update context but inherit context
from caller method.

Challenge

It is difficult to judge when to apply context tunneling.

Data-Driven Context
Tunneling

Our data-driven approach automatically generates
context tunneling heuristics that measure quality of
each context.

Tunneling Heuristic

Tunneling heuristic, which expresses situations that
contexts should not be updated, is a set of relations
between two methods.

T ✓ M ⇥ M

When method m is called under its parent method p,
callee context is constructed as follows:

calleeCtx =

⇢
dparCtx ++ elememaxK if (p, m) 62 T
dparCtxemaxK if (p, m) 2 T

Learning Model for Tunneling

Our model uses two boolean formulas P = h f1, f2i
and generates the tunneling relation for a given pro-
gram P as follows:

{(m1, m2) 2 MP ⇥ MP | m1 2 J f1KP _ m2 2 J f2KP}.

Optimization Problem
Find parameter P = h f1, f2i that maximizes analysis
precision while it is scalable than P = hfalse, falsei over
training programs.

Learning in Non Monotonic Space

Unlike other parameteric static analysis, heuristics for
context tunneling are not equipped with precision or-
der.
T ✓ T 0 6) prec(T) � prec(T 0) _ prec(T)  prec(T 0)

Evaluation

S1objH+T S1objH S2objH

luindex alarms 371 783 415
cost 34 66 36

lusearch alarms 380 850 420
cost 37 79 63

antlr alarms 483 956 530
cost 47 85 50

pmd alarms 713 1,217 761
cost 53 129 56

eclipse alarms 586 1,061 625
costs 41 129 49

xalan alarms 572 1,129 623
costs 64 187 465

fop alarms 1,080 1,975 1,107
costs 121 916 513

chart alarms 876 2,290 915
costs 73 1,299 488

bloat alarms 1,251 1,931 1,326
costs 464 707 2,211

jython alarms 837 1,308 timeout
costs 425 730 -

Precise and Scalable Points-to Analysis via
Data-Driven Context Tunneling

Minseok Jeon, Sehun Jeong, and Hakjoo Oh
SAL
Software Analysis Laboratory

Problem of Most-recent-k
Context Abstraction

• Most-recent-k policy often abandons important con-
text elements

Motivating Example
• Two may-fail casting queries, which are safe

•main calls identity function id twice

• Value of i is unknown

•id calls itself i-1 times recursively

1 class A{} class B{}

2 class C{

3 static Object id(Object v, int i){

4 return i >= 0 ? id(v, i-1): v;

5 }

6 public static void main(){

7 int i = input();

8 A a = (A) id(new A(),i);//query1

9 B b = (B) id(new B(),i);//query2

10 }

11 }

Conventional K-CFA
• k-call-site-sensitivity fails to prove the queries no

matter what k value is used

• Since i is unbounded, analysis eventually losses im-
portant contexts 8 and 9, becomes imprecise

main(*)

id(8)

id(9)

id(8,4)

id(9,4)

id(8,4,…,4)
k

id(9,4,…,4)
k

id(4,…,4)
k

k

k

k

Our Approach:
Context Tunneling

• Do not keep most-recent-k

• Instead, keep most-important-k

1-CFA with Context Tunneling
• 1-CFA with context tunneling proves all the queries

• With context tunneling, method calls selectively up-
date callee contexts

• When id calls id at line 4, callee method does
not update context but inherit context from caller
method (e.g., context tunneling is applied)

!19

main
[]

id
[8]

id
[9]

id
[8]

id
[9]

main
[]

id
[8]

id
[9]

Challenge
• It is difficult to know right places for applying con-

text tunneling (i.e., id called in id)

• Wrong choices of context tunneling may result im-
precise and expensive analysis

Unknown
Ctx

Data-Driven
Context Tunneling

Parametric
static analyzer

Training data
(programs)

Atomic features
(, , … ,)a1 a2 a23

Data-Driven Framework

Predicates
over methods

Data-Driven Context Tunneling

!18

(¬a6 � a8 � ¬a10 � ¬a11 � a14 � a15 � ¬a16 � ¬a17 � ¬a18 � ¬a19 � ¬a20 � ¬a22) �
(a1 � a2 � ¬a3 � ¬a4 � ¬a6 � a8 � ¬a9 � ¬a10 � ¬a11 � a12 � a14 � a15 � . . .) �
(a1 � ¬a2 � ¬a3 � a4 � ¬a6 � ¬a7 � �a8 � ¬a9 � ¬a10 � ¬a11 � ¬a12 � . . .)

(¬a3 � a6 � ¬a9 � a14 � a15 � ¬a18 � ¬a19 � ¬a23)
(a1 � ¬a3 � ¬a4 � a7 � ¬a9 � a12 � a14 � a15 � ¬a16 � ¬a19 � ¬a21) �
(a1 � ¬a2 � ¬a3 � ¬a6 � ¬a9 � a11 � � ¬a13 � a14 � a15 � ¬a16 � ¬a17 � . . .) �

• : Property of caller methods

fcallee• : Property of callee methods

fcaller

Tunneling Heuristic
• A set of relations T between two methods
•T expresses when contexts should not be updated

T ✓ M ⇥ M

• Method m is called under its parent method p
• Callee context is constructed as follows:

calleeCtx =

⇢
dparCtx ++ elememaxK if (p, m) 62 T
dparCtxemaxK if (p, m) 2 T

Learning Model for Tunneling
• Two boolean formulas P = h f1, f2i is our model’s

parameter
• Given parameter, the model generates the tunneling

relation T for a given program P as follows:
{(m1, m2) 2 MP ⇥ MP | m1 2 J f1KP _ m2 2 J f2KP}.

Learning Problem
Find parameter P = h f1, f2i that maximizes analysis
precision while it is scalable than P = hfalse, falsei (i.e.,
conventional context sensitivities) over training pro-
grams.

Learning in Non-monotonic Space
• Unlike other parameteric static analysis, heuristics

for context tunneling are not equipped with preci-
sion order

T ✓ T 0 6) prec(T) � prec(T 0) _ prec(T)  prec(T 0)

• Our learning algorithm repeats exploration and ex-
ploitation steps in order to avoid local minima

0 20 40 60 80 100
1900

2000

2100

2200

2300
2500

3000

3500

4000

S1objH(3,806)

m
ay

-fa
il

ca
st

s

Progress(%)

 Non-greedy strategy
 Greedy strategy

Evaluation
• Ours (S1objH+T) is more precise and faster than con-

ventions
S1objH+T S1objH S2objH

luindex alarms 371 783 415
cost 34 66 36

lusearch alarms 380 850 420
cost 37 79 63

antlr alarms 483 956 530
cost 47 85 50

pmd alarms 713 1,217 761
cost 53 129 56

eclipse alarms 586 1,061 625
costs 41 129 49

xalan alarms 572 1,129 623
costs 64 187 465

fop alarms 1,080 1,975 1,107
costs 121 916 513

chart alarms 876 2,290 915
costs 73 1,299 488

bloat alarms 1,251 1,931 1,326
costs 464 707 2,211

jython alarms 837 1,308 timeout
costs 425 730 -main(*)

id(8)

id(9)

id(8,4)

id(9,4)

id(8,4,…,4)
k

id(9,4,…,4)
k

id(4,…,4)
k

k

k

k

Precise and Scalable Points-to Analysis via
Data-Driven Context Tunneling

Minseok Jeon, Sehun Jeong, and Hakjoo Oh

Problem of Most-recent-k
Context Abstraction

• Most-recent-k policy often abandons important con-
text elements

Motivating Example
• Two may-fail casting queries, which are safe

•main calls identity function id twice

• Value of i is unknown

•id calls itself i-1 times recursively

1 class A{} class B{}

2 class C{

3 static Object id(Object v, int i){

4 return i >= 0 ? id(v, i-1): v;

5 }

6 public static void main(){

7 int i = input();

8 A a = (A) id(new A(),i);//query1

9 B b = (B) id(new B(),i);//query2

10 }

11 }

Conventional K-CFA
• k-call-site-sensitivity fails to prove the queries no

matter what k value is used

• Since i is unbounded, analysis eventually merges id
invocations (losses precision)

Context Tunneling

• Do not keep most-recent-k

• Instead, keep most-important-k
Context Tunneling

: useless

: important

concrete:

abstract:
k = 3

most recent
• Instead, keep most important K

•Do not keep most recent K

!1

1-CFA with Context Tunneling

With context tunneling, 1-CFA can prove the queries.
In the example, when id calls id at invocation 4, callee
method does not update context but inherit context
from caller method.

Challenge

It is difficult to judge when to apply context tunneling.

Data-Driven Context
Tunneling

Our data-driven approach automatically generates
context tunneling heuristics that measure quality of
each context.

Tunneling Heuristic

Tunneling heuristic, which expresses situations that
contexts should not be updated, is a set of relations
between two methods.

T ✓ M ⇥ M

When method m is called under its parent method p,
callee context is constructed as follows:

calleeCtx =

⇢
dparCtx ++ elememaxK if (p, m) 62 T
dparCtxemaxK if (p, m) 2 T

Learning Model for Tunneling

Our model uses two boolean formulas P = h f1, f2i
and generates the tunneling relation for a given pro-
gram P as follows:

{(m1, m2) 2 MP ⇥ MP | m1 2 J f1KP _ m2 2 J f2KP}.

Optimization Problem
Find parameter P = h f1, f2i that maximizes analysis
precision while it is scalable than P = hfalse, falsei over
training programs.

Learning in Non Monotonic Space

Unlike other parameteric static analysis, heuristics for
context tunneling are not equipped with precision or-
der.
T ✓ T 0 6) prec(T) � prec(T 0) _ prec(T)  prec(T 0)

Evaluation

S1objH+T S1objH S2objH

luindex alarms 371 783 415
cost 34 66 36

lusearch alarms 380 850 420
cost 37 79 63

antlr alarms 483 956 530
cost 47 85 50

pmd alarms 713 1,217 761
cost 53 129 56

eclipse alarms 586 1,061 625
costs 41 129 49

xalan alarms 572 1,129 623
costs 64 187 465

fop alarms 1,080 1,975 1,107
costs 121 916 513

chart alarms 876 2,290 915
costs 73 1,299 488

bloat alarms 1,251 1,931 1,326
costs 464 707 2,211

jython alarms 837 1,308 timeout
costs 425 730 -

!19

main
[]

id
[8]

id
[9]

id
[8]

id
[9]

main
[]

id
[8]

id
[9]

Unknown
Ctx

Parametric
static analyzer

Training data
(programs)

Atomic features
(, , … ,)a1 a2 a23

Data-Driven Framework

Predicates
over methods

Data-Driven Context Tunneling

!18

(¬a6 ∧ a8 ∧ ¬a10 ∧ ¬a11 ∧ a14 ∧ a15 ∧ ¬a16 ∧ ¬a17 ∧ ¬a18 ∧ ¬a19 ∧ ¬a20 ∧ ¬a22) ∨
(a1 ∧ a2 ∧ ¬a3 ∧ ¬a4 ∧ ¬a6 ∧ a8 ∧ ¬a9 ∧ ¬a10 ∧ ¬a11 ∧ a12 ∧ a14 ∧ a15 ∧ . . .) ∨
(a1 ∧ ¬a2 ∧ ¬a3 ∧ a4 ∧ ¬a6 ∧ ¬a7 ∧ ∧a8 ∧ ¬a9 ∧ ¬a10 ∧ ¬a11 ∧ ¬a12 ∧ . . .)

(¬a3 ∧ a6 ∧ ¬a9 ∧ a14 ∧ a15 ∧ ¬a18 ∧ ¬a19 ∧ ¬a23)
(a1 ∧ ¬a3 ∧ ¬a4 ∧ a7 ∧ ¬a9 ∧ a12 ∧ a14 ∧ a15 ∧ ¬a16 ∧ ¬a19 ∧ ¬a21) ∨
(a1 ∧ ¬a2 ∧ ¬a3 ∧ ¬a6 ∧ ¬a9 ∧ a11 ∧ ∧ ¬a13 ∧ a14 ∧ a15 ∧ ¬a16 ∧ ¬a17 ∧ . . .) ∨

• : Property of caller methods

fcallee• : Property of callee methods

fcaller

Precise and Scalable Points-to Analysis via
Data-Driven Context Tunneling

Minseok Jeon, Sehun Jeong, and Hakjoo Oh
SAL
Software Analysis Laboratory

Problem of Most-recent-k
Context Abstraction

• Most-recent-k policy often abandons important con-
text elements

Motivating Example
• Two may-fail casting queries, which are safe

•main calls identity function id twice

• Value of i is unknown

•id calls itself i-1 times recursively

1 class A{} class B{}

2 class C{

3 static Object id(Object v, int i){

4 return i >= 0 ? id(v, i-1): v;

5 }

6 public static void main(){

7 int i = input();

8 A a = (A) id(new A(),i);//query1

9 B b = (B) id(new B(),i);//query2

10 }

11 }

Conventional K-CFA
• k-call-site-sensitivity fails to prove the queries no

matter what k value is used

• Since i is unbounded, analysis eventually losses im-
portant contexts 8 and 9, becomes imprecise

main(*)

id(8)

id(9)

id(8,4)

id(9,4)

id(8,4,…,4)
k

id(9,4,…,4)
k

id(4,…,4)
k

k

k

k

Our Approach:
Context Tunneling

• Do not keep most-recent-k

• Instead, keep most-important-k

1-CFA with Context Tunneling
• 1-CFA with context tunneling proves all the queries

• With context tunneling, method calls selectively up-
date callee contexts

• When id calls id at line 4, callee method does
not update context but inherit context from caller
method (e.g., context tunneling is applied)

!19

main
[]

id
[8]

id
[9]

id
[8]

id
[9]

main
[]

id
[8]

id
[9]

Challenge
• It is difficult to know right places for applying con-

text tunneling (i.e., id called in id)

• Wrong choices of context tunneling may result im-
precise and expensive analysis

Unknown
Ctx

Data-Driven
Context Tunneling

Parametric
static analyzer

Training data
(programs)

Atomic features
(, , … ,)a1 a2 a23

Data-Driven Framework

Predicates
over methods

Data-Driven Context Tunneling

!18

(¬a6 � a8 � ¬a10 � ¬a11 � a14 � a15 � ¬a16 � ¬a17 � ¬a18 � ¬a19 � ¬a20 � ¬a22) �
(a1 � a2 � ¬a3 � ¬a4 � ¬a6 � a8 � ¬a9 � ¬a10 � ¬a11 � a12 � a14 � a15 � . . .) �
(a1 � ¬a2 � ¬a3 � a4 � ¬a6 � ¬a7 � �a8 � ¬a9 � ¬a10 � ¬a11 � ¬a12 � . . .)

(¬a3 � a6 � ¬a9 � a14 � a15 � ¬a18 � ¬a19 � ¬a23)
(a1 � ¬a3 � ¬a4 � a7 � ¬a9 � a12 � a14 � a15 � ¬a16 � ¬a19 � ¬a21) �
(a1 � ¬a2 � ¬a3 � ¬a6 � ¬a9 � a11 � � ¬a13 � a14 � a15 � ¬a16 � ¬a17 � . . .) �

• : Property of caller methods

fcallee• : Property of callee methods

fcaller

Tunneling Heuristic
• A set of relations T between two methods
•T expresses when contexts should not be updated

T ✓ M ⇥ M

• Method m is called under its parent method p
• Callee context is constructed as follows:

calleeCtx =

⇢
dparCtx ++ elememaxK if (p, m) 62 T
dparCtxemaxK if (p, m) 2 T

Learning Model for Tunneling
• Two boolean formulas P = h f1, f2i is our model’s

parameter
• Given parameter, the model generates the tunneling

relation T for a given program P as follows:
{(m1, m2) 2 MP ⇥ MP | m1 2 J f1KP _ m2 2 J f2KP}.

Learning Problem
Find parameter P = h f1, f2i that maximizes analysis
precision while it is scalable than P = hfalse, falsei (i.e.,
conventional context sensitivities) over training pro-
grams.

Learning in Non-monotonic Space
• Unlike other parameteric static analysis, heuristics

for context tunneling are not equipped with preci-
sion order

T ✓ T 0 6) prec(T) � prec(T 0) _ prec(T)  prec(T 0)

• Our learning algorithm repeats exploration and ex-
ploitation steps in order to avoid local minima

0 20 40 60 80 100
1900

2000

2100

2200

2300
2500

3000

3500

4000

S1objH(3,806)

m
ay

-fa
il

ca
st

s

Progress(%)

 Non-greedy strategy
 Greedy strategy

Evaluation
• Ours (S1objH+T) is more precise and faster than con-

ventions
S1objH+T S1objH S2objH

luindex alarms 371 783 415
cost 34 66 36

lusearch alarms 380 850 420
cost 37 79 63

antlr alarms 483 956 530
cost 47 85 50

pmd alarms 713 1,217 761
cost 53 129 56

eclipse alarms 586 1,061 625
costs 41 129 49

xalan alarms 572 1,129 623
costs 64 187 465

fop alarms 1,080 1,975 1,107
costs 121 916 513

chart alarms 876 2,290 915
costs 73 1,299 488

bloat alarms 1,251 1,931 1,326
costs 464 707 2,211

jython alarms 837 1,308 timeout
costs 425 730 -

Precise and Scalable Points-to Analysis via
Data-Driven Context Tunneling

Minseok Jeon, Sehun Jeong, and Hakjoo Oh
SAL
Software Analysis Laboratory

Problem of Most-recent-k
Context Abstraction

• Most-recent-k policy often abandons important con-
text elements

Motivating Example
• Two may-fail casting queries, which are safe

•main calls identity function id twice

• Value of i is unknown

•id calls itself i-1 times recursively

1 class A{} class B{}

2 class C{

3 static Object id(Object v, int i){

4 return i >= 0 ? id(v, i-1): v;

5 }

6 public static void main(){

7 int i = input();

8 A a = (A) id(new A(),i);//query1

9 B b = (B) id(new B(),i);//query2

10 }

11 }

Conventional K-CFA
• k-call-site-sensitivity fails to prove the queries no

matter what k value is used

• Since i is unbounded, analysis eventually losses im-
portant contexts 8 and 9, becomes imprecise

main(*)

id(8)

id(9)

id(8,4)

id(9,4)

id(8,4,…,4)
k

id(9,4,…,4)
k

id(4,…,4)
k

k

k

k

Our Approach:
Context Tunneling

• Do not keep most-recent-k

• Instead, keep most-important-k

1-CFA with Context Tunneling
• 1-CFA with context tunneling proves all the queries

• With context tunneling, method calls selectively up-
date callee contexts

• When id calls id at line 4, callee method does
not update context but inherit context from caller
method (e.g., context tunneling is applied)

!19

main
[]

id
[8]

id
[9]

id
[8]

id
[9]

main
[]

id
[8]

id
[9]

Challenge
• It is difficult to know right places for applying con-

text tunneling (i.e., id called in id)

• Wrong choices of context tunneling may result im-
precise and expensive analysis

Unknown
Ctx

Data-Driven
Context Tunneling

Parametric
static analyzer

Training data
(programs)

Atomic features
(, , … ,)a1 a2 a23

Data-Driven Framework

Predicates
over methods

Data-Driven Context Tunneling

!18

(¬a6 � a8 � ¬a10 � ¬a11 � a14 � a15 � ¬a16 � ¬a17 � ¬a18 � ¬a19 � ¬a20 � ¬a22) �
(a1 � a2 � ¬a3 � ¬a4 � ¬a6 � a8 � ¬a9 � ¬a10 � ¬a11 � a12 � a14 � a15 � . . .) �
(a1 � ¬a2 � ¬a3 � a4 � ¬a6 � ¬a7 � �a8 � ¬a9 � ¬a10 � ¬a11 � ¬a12 � . . .)

(¬a3 � a6 � ¬a9 � a14 � a15 � ¬a18 � ¬a19 � ¬a23)
(a1 � ¬a3 � ¬a4 � a7 � ¬a9 � a12 � a14 � a15 � ¬a16 � ¬a19 � ¬a21) �
(a1 � ¬a2 � ¬a3 � ¬a6 � ¬a9 � a11 � � ¬a13 � a14 � a15 � ¬a16 � ¬a17 � . . .) �

• : Property of caller methods

fcallee• : Property of callee methods

fcaller

Tunneling Heuristic
• A set of relations T between two methods
•T expresses when contexts should not be updated

T ✓ M ⇥ M

• Method m is called under its parent method p
• Callee context is constructed as follows:

calleeCtx =

⇢
dparCtx ++ elememaxK if (p, m) 62 T
dparCtxemaxK if (p, m) 2 T

Learning Model for Tunneling
• Two boolean formulas P = h f1, f2i is our model’s

parameter
• Given parameter, the model generates the tunneling

relation T for a given program P as follows:
{(m1, m2) 2 MP ⇥ MP | m1 2 J f1KP _ m2 2 J f2KP}.

Learning Problem
Find parameter P = h f1, f2i that maximizes analysis
precision while it is scalable than P = hfalse, falsei (i.e.,
conventional context sensitivities) over training pro-
grams.

Learning in Non-monotonic Space
• Unlike other parameteric static analysis, heuristics

for context tunneling are not equipped with preci-
sion order

T ✓ T 0 6) prec(T) � prec(T 0) _ prec(T)  prec(T 0)

• Our learning algorithm repeats exploration and ex-
ploitation steps in order to avoid local minima

0 20 40 60 80 100
1900

2000

2100

2200

2300
2500

3000

3500

4000

S1objH(3,806)

m
ay

-fa
il

ca
st

s

Progress(%)

 Non-greedy strategy
 Greedy strategy

Evaluation
• Ours (S1objH+T) is more precise and faster than con-

ventions
S1objH+T S1objH S2objH

luindex alarms 371 783 415
cost 34 66 36

lusearch alarms 380 850 420
cost 37 79 63

antlr alarms 483 956 530
cost 47 85 50

pmd alarms 713 1,217 761
cost 53 129 56

eclipse alarms 586 1,061 625
costs 41 129 49

xalan alarms 572 1,129 623
costs 64 187 465

fop alarms 1,080 1,975 1,107
costs 121 916 513

chart alarms 876 2,290 915
costs 73 1,299 488

bloat alarms 1,251 1,931 1,326
costs 464 707 2,211

jython alarms 837 1,308 timeout
costs 425 730 -

Precise and Scalable Points-to Analysis via
Data-Driven Context Tunneling

Minseok Jeon, Sehun Jeong, and Hakjoo Oh
SAL
Software Analysis Laboratory

Problem of Most-recent-k
Context Abstraction

• Most-recent-k policy often abandons important con-
text elements

Motivating Example
• Two may-fail casting queries, which are safe

•main calls identity function id twice

• Value of i is unknown

•id calls itself i-1 times recursively

1 class A{} class B{}

2 class C{

3 static Object id(Object v, int i){

4 return i >= 0 ? id(v, i-1): v;

5 }

6 public static void main(){

7 int i = input();

8 A a = (A) id(new A(),i);//query1

9 B b = (B) id(new B(),i);//query2

10 }

11 }

Conventional K-CFA
• k-call-site-sensitivity fails to prove the queries no

matter what k value is used

• Since i is unbounded, analysis eventually losses im-
portant contexts 8 and 9, becomes imprecise

main(*)

id(8)

id(9)

id(8,4)

id(9,4)

id(8,4,…,4)
k

id(9,4,…,4)
k

id(4,…,4)
k

k

k

k

Our Approach:
Context Tunneling

• Do not keep most-recent-k

• Instead, keep most-important-k

1-CFA with Context Tunneling
• 1-CFA with context tunneling proves all the queries

• With context tunneling, method calls selectively up-
date callee contexts

• When id calls id at line 4, callee method does
not update context but inherit context from caller
method (e.g., context tunneling is applied)

!19

main
[]

id
[8]

id
[9]

id
[8]

id
[9]

main
[]

id
[8]

id
[9]

Challenge
• It is difficult to know right places for applying con-

text tunneling (i.e., id called in id)

• Wrong choices of context tunneling may result im-
precise and expensive analysis

Unknown
Ctx

Data-Driven
Context Tunneling

Parametric
static analyzer

Training data
(programs)

Atomic features
(, , … ,)a1 a2 a23

Data-Driven Framework

Predicates
over methods

Data-Driven Context Tunneling

!18

(¬a6 � a8 � ¬a10 � ¬a11 � a14 � a15 � ¬a16 � ¬a17 � ¬a18 � ¬a19 � ¬a20 � ¬a22) �
(a1 � a2 � ¬a3 � ¬a4 � ¬a6 � a8 � ¬a9 � ¬a10 � ¬a11 � a12 � a14 � a15 � . . .) �
(a1 � ¬a2 � ¬a3 � a4 � ¬a6 � ¬a7 � �a8 � ¬a9 � ¬a10 � ¬a11 � ¬a12 � . . .)

(¬a3 � a6 � ¬a9 � a14 � a15 � ¬a18 � ¬a19 � ¬a23)
(a1 � ¬a3 � ¬a4 � a7 � ¬a9 � a12 � a14 � a15 � ¬a16 � ¬a19 � ¬a21) �
(a1 � ¬a2 � ¬a3 � ¬a6 � ¬a9 � a11 � � ¬a13 � a14 � a15 � ¬a16 � ¬a17 � . . .) �

• : Property of caller methods

fcallee• : Property of callee methods

fcaller

Tunneling Heuristic
• A set of relations T between two methods
•T expresses when contexts should not be updated

T ✓ M ⇥ M

• Method m is called under its parent method p
• Callee context is constructed as follows:

calleeCtx =

⇢
dparCtx ++ elememaxK if (p, m) 62 T
dparCtxemaxK if (p, m) 2 T

Learning Model for Tunneling
• Two boolean formulas P = h f1, f2i is our model’s

parameter
• Given parameter, the model generates the tunneling

relation T for a given program P as follows:
{(m1, m2) 2 MP ⇥ MP | m1 2 J f1KP _ m2 2 J f2KP}.

Learning Problem
Find parameter P = h f1, f2i that maximizes analysis
precision while it is scalable than P = hfalse, falsei (i.e.,
conventional context sensitivities) over training pro-
grams.

Learning in Non-monotonic Space
• Unlike other parameteric static analysis, heuristics

for context tunneling are not equipped with preci-
sion order

T ✓ T 0 6) prec(T) � prec(T 0) _ prec(T)  prec(T 0)

• Our learning algorithm repeats exploration and ex-
ploitation steps in order to avoid local minima

0 20 40 60 80 100
1900

2000

2100

2200

2300
2500

3000

3500

4000

S1objH(3,806)

m
ay

-fa
il

ca
st

s

Progress(%)

 Non-greedy strategy
 Greedy strategy

Evaluation
• Ours (S1objH+T) is more precise and faster than con-

ventions
S1objH+T S1objH S2objH

luindex alarms 371 783 415
cost 34 66 36

lusearch alarms 380 850 420
cost 37 79 63

antlr alarms 483 956 530
cost 47 85 50

pmd alarms 713 1,217 761
cost 53 129 56

eclipse alarms 586 1,061 625
costs 41 129 49

xalan alarms 572 1,129 623
costs 64 187 465

fop alarms 1,080 1,975 1,107
costs 121 916 513

chart alarms 876 2,290 915
costs 73 1,299 488

bloat alarms 1,251 1,931 1,326
costs 464 707 2,211

jython alarms 837 1,308 timeout
costs 425 730 -

IV. Learning in Non-monotonic Space

• Context tunneling heuristics
are not equipped with
precision order

• Our learning algorithm
repeats exploration and
exploitation steps to avoid
local minima 0 20 40 60 80 100

1900

2000

2100

2200

2300
2500

3000

3500

4000

S1objH(3,806)

m
ay

-fa
il

ca
st

s

Progress(%)

 Non-greedy strategy
 Greedy strategy

V. Evaluation

• Ours (S1objH+T) is
more precise and
faster than
conventions.

Precise and Scalable Points-to Analysis via
Data-Driven Context Tunneling

Minseok Jeon, Sehun Jeong, and Hakjoo Oh
SAL
Software Analysis Laboratory

Problem of Most Recent K
Context AbstractionProblem of Most Recent K

: useless

: important

concrete context:

abstract context:
k = 3

wasted!

•Most-recent-k often abandons important context
elements

!1

most recent

Motivating Example

1 class A{} class B{}

2 class C{

3 static Object id(Object v, int i){

4 return i >= 0 ? id(v, i-1): v;

5 }

6 public static void main(){

7 int i = input();

8 A a = (A) id(new A(),i);//query1

9 B b = (B) id(new B(),i);//query2

10 }

11 }

Conventional K-CFA

The conventional k-call-site-sensitive analysis fails to
prove the queries no matter what k value is used.

main(*)

id(8)

id(9)

id(8,4)

id(9,4)

id(8,4,…,4)
k

id(9,4,…,4)
k

id(4,…,4)
k

k

k

k

Context Tunneling
Context Tunneling

: useless

: important

concrete:

abstract:
k = 3

most recent
• Instead, keep most important K

•Do not keep most recent K

!1

1-CFA with Context Tunneling

With context tunneling, 1-CFA can prove the queries.
In the example, when id calls id at invocation 4, callee
method does not update context but inherit context
from caller method.

main(*)

id(8)

id(9)

Challenge

It is difficult to judge when to apply context tunneling.

Unknown
Ctx

Data-Driven Context
Tunneling

Our data-driven approach automatically generates
context tunneling heuristics that measure quality of
each context.

About 60 hours

Training Programs
Data-Driven

Tunneling Heuristic

Tunneling Heuristic

Tunneling heuristic, which expresses situations that
contexts should not be updated, is a set of relations
between two methods.

T ✓ M ⇥ M

When method m is called under its parent method p,
callee context is constructed as follows:

calleeCtx =

⇢
dparCtx ++ elememaxK if (p, m) 62 T
dparCtxemaxK if (p, m) 2 T

Learning Model for Tunneling

Our model uses two boolean formulas P = h f1, f2i
and generates the tunneling relation for a given pro-
gram P as follows:

{(m1, m2) 2 MP ⇥ MP | m1 2 J f1KP _ m2 2 J f2KP}.

Optimization Problem
Find parameter P = h f1, f2i that maximizes analysis
precision while it is scalable than P = hfalse, falsei over
training programs.

Learning in Non Monotonic Space

Unlike other parameteric static analysis, heuristics for
context tunneling are not equipped with precision or-
der.
T ✓ T 0 6) prec(T) � prec(T 0) _ prec(T)  prec(T 0)

0 20 40 60 80 100
1900

2000

2100

2200

2300
2500

3000

3500

4000

S1objH(3,806)

m
ay

-fa
il

ca
st

s

Progress(%)

 Non-greedy strategy
 Greedy strategy

Evaluation

S1objH+T S1objH S2objH

xalan alarms 572 1,129 623
costs 64 187 465

chart alarms 876 2,290 915
costs 73 1,299 488

bloat alarms 1,251 1,931 1,326
costs 464 707 2,211

jython alarms 837 1,308 timeout
costs 425 730 -

