Enough to Check Collatz Conjecture for $16 k+11$

Minseok Jeon and Hakjoo Oh
Korea University
\{jms5818,hakjoo_oh\}@korea.ac.kr

Abstract

We show that it is enough to check Collatz conjecture for the integers of the form $16 k+11$.

1 Introduction

Collatz conjecture, also known as the $3 x+1$ conjecture, is simply stated as follows. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function defined as

$$
f(n)= \begin{cases}n / 2 & \text { if } n \text { is even } \\ 3 n+1 & \text { if } n \text { is odd. }\end{cases}
$$

Let \mathcal{H} be the set of natural numbers such that repeatedly applying f to the numbers eventually leads to 1 .

Definition 1. $\mathcal{H}=\left\{n \in \mathbb{N} \mid\right.$ there exists m such that $\left.f^{m}(n)=1\right\}$.
Collatz conjecture asserts that the set \mathcal{H} is equal to the set of all natural numbers.
Conjecture 1 (Collatz). $\mathcal{H}=\mathbb{N}$.
In this paper, we show that it is enough to check this conjecture only for numbers of the form $16 k+11$.

Theorem 1. If $\{16 k+11 \mid k \in \mathbb{N}\} \subset \mathcal{H}$, then Collatz conjecture is true.
To the best of our knowledge [1], our result has not been known before.

2 Proof

Theorem 1 follows from the following proposition:
Proposition 1. Under the assumption of Theorem 1, if $\left\{n \mid n<2^{m}\right\} \subset \mathcal{H}$ for some m, then $\left\{n \mid n<2^{m+1}\right\} \subset \mathcal{H}$.

To prove the proposition, we need the following lemmas.
Lemma 1. $n \in \mathcal{H} \Longleftrightarrow f^{m}(n) \in \mathcal{H}$ for some $m \in \mathbb{N}$.
Proof. Follows from the definitions of f and \mathcal{H}.

Lemma 2.

1. $2 n+1 \in \mathcal{H} \Longrightarrow 8 n+5 \in \mathcal{H}$.
2. $8 n+1 \in \mathcal{H} \Longrightarrow 16 n+3 \in \mathcal{H}$.
3. $4 n+1 \in \mathcal{H} \Longrightarrow 8 n+3 \in \mathcal{H}$.
4. $4 n+3 \in \mathcal{H} \Longrightarrow 8 n+7 \in \mathcal{H}$.

Proof. We use Lemma 1 in the proof.

1. $f^{2}(2 n+1)=3 n+2=f^{4}(8 n+5)$.
2. $f^{3}(8 n+1)=6 n+1$. On the other hand, $f^{2}(16 n+3)=24 n+5$. It follows from Lemma 2.1.
3. We consider two cases when n is even and odd. For $n=2 p, 4 n+1=8 p+1$. We use Lemma 2.2 to have $8 n+3 \in \mathcal{H}$. When $n=2 p+1$, from the assumption $16 p+11=8 n+3 \in \mathcal{H}$.
4. Choose integer q and r so that

$$
n+1=2^{r}(2 q+1)
$$

Then $4 n+3=2^{r+2}(2 q+1)-1$. Now $f^{2}(4 n+3)=2^{r+1} \cdot 3(2 q+1)-1$ and we see that the exponent decreases by one and the remaning factor is still odd. Continue this process until the expononent becomes 1 . By the assumption,

$$
f^{2 r+2}(4 n+3)=2 \cdot 3^{r+1}(2 q+1)-1=4 \cdot 3^{r+1} q+2 \cdot 3^{r+1}-1 \in \mathcal{H} .
$$

Since this number is of the form $4 n+1$, we use Lemma 2.3 to see that $4 \cdot 3^{r+1}(2 q+1)-1 \in \mathcal{H}$. On the other hand, $8 n+7=2^{r+3}(2 q+1)-1$ and similarly we obtain $f^{2 r+2}(8 n+7)=$ $4 \cdot 3^{r+1}(2 q+1)-1$. By Lemma 1, it follows that $8 n+7 \in \mathcal{H}$.

Proof of Proposition 1. Let $A_{m}:=\left\{n \mid n<2^{m}\right\}$. Pick x from A_{m+1}. There are five cases.

1. $x=2 k$.
$f(x)=k \in A_{m}$.
2. $x=8 k+1$.

Write k as $k=2^{s} \cdot t$ with integer s and odd t. Then

$$
8 k+1=2^{s+3} t+1
$$

Now $f^{3}(8 k+1)=2^{s+1} \cdot 3 t+1$. As in the proof of Lemma 2.4, every three step decreases the exponent by two and the remaining factor stays odd.
When s is even, we get $2 \cdot 3^{s / 2+1} t+1$ after $3 \cdot(s / 2+1)$ steps. Since $3^{s / 2+1} t \in A_{m}$ is odd, the proof follows from Lemma 2.3 and 2.4. When s is odd, we get $4 \cdot 3^{(s+1) / 2} t+1$ after $3(s+1) / 2$ steps. Since $3^{(s+1) / 2} t \in A_{m}$ is odd, we use Lemma 2.1.
3. $x=8 k+3$.
$4 k+1 \in A_{m}$ and use Lemma 2.3.
4. $x=8 k+5$.
$2 k+1 \in A_{m}$ and use Lemma 2.1.
5. $x=8 k+7$.
$4 k+3 \in A_{m}$ and use Lemma 2.4.
Acknowledgement We thank Taekgyu Hwang for helpful comments on drafts of this work.

References

1. J. C. Lagarias. The $3 x+1$ problem: An annotated bibliography (1963-1999) (sorted by author). ArXiv Mathematics e-prints, September 2003.
