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Abstract. We show that it is enough to check Collatz conjecture for the integers of the
form 16k + 11.

1 Introduction

Collatz conjecture, also known as the 3x+ 1 conjecture, is simply stated as follows. Let f : N→ N
be a function defined as

f(n) =

{
n/2 if n is even.
3n + 1 if n is odd.

Let H be the set of natural numbers such that repeatedly applying f to the numbers eventually
leads to 1.

Definition 1. H = {n ∈ N | there exists m such that fm(n) = 1}.

Collatz conjecture asserts that the set H is equal to the set of all natural numbers.

Conjecture 1 (Collatz). H = N.

In this paper, we show that it is enough to check this conjecture only for numbers of the form
16k + 11.

Theorem 1. If {16k + 11 | k ∈ N} ⊂ H, then Collatz conjecture is true.

To the best of our knowledge [1], our result has not been known before.

2 Proof

Theorem 1 follows from the following proposition:

Proposition 1. Under the assumption of Theorem 1, if {n | n < 2m} ⊂ H for some m, then
{n | n < 2m+1} ⊂ H.

To prove the proposition, we need the following lemmas.

Lemma 1. n ∈ H ⇐⇒ fm(n) ∈ H for some m ∈ N.

Proof. Follows from the definitions of f and H.

Lemma 2.

1. 2n + 1 ∈ H =⇒ 8n + 5 ∈ H.
2. 8n + 1 ∈ H =⇒ 16n + 3 ∈ H.
3. 4n + 1 ∈ H =⇒ 8n + 3 ∈ H.
4. 4n + 3 ∈ H =⇒ 8n + 7 ∈ H.

Proof. We use Lemma 1 in the proof.

1. f2(2n + 1) = 3n + 2 = f4(8n + 5).
2. f3(8n + 1) = 6n + 1. On the other hand, f2(16n + 3) = 24n + 5. It follows from Lemma 2.1.
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3. We consider two cases when n is even and odd. For n = 2p, 4n+1 = 8p+1. We use Lemma 2.2
to have 8n + 3 ∈ H. When n = 2p + 1, from the assumption 16p + 11 = 8n + 3 ∈ H.

4. Choose integer q and r so that
n + 1 = 2r(2q + 1).

Then 4n + 3 = 2r+2(2q + 1) − 1. Now f2(4n + 3) = 2r+1 · 3(2q + 1) − 1 and we see that the
exponent decreases by one and the remaning factor is still odd. Continue this process until the
expononent becomes 1. By the assumption,

f2r+2(4n + 3) = 2 · 3r+1(2q + 1)− 1 = 4 · 3r+1q + 2 · 3r+1 − 1 ∈ H.

Since this number is of the form 4n+ 1, we use Lemma 2.3 to see that 4 ·3r+1(2q+ 1)−1 ∈ H.
On the other hand, 8n + 7 = 2r+3(2q + 1) − 1 and similarly we obtain f2r+2(8n + 7) =
4 · 3r+1(2q + 1)− 1. By Lemma 1, it follows that 8n + 7 ∈ H.

Proof of Proposition 1. Let Am := {n | n < 2m}. Pick x from Am+1. There are five cases.

1. x = 2k.
f(x) = k ∈ Am.

2. x = 8k + 1.
Write k as k = 2s · t with integer s and odd t. Then

8k + 1 = 2s+3t + 1.

Now f3(8k + 1) = 2s+1 · 3t + 1. As in the proof of Lemma 2.4, every three step decreases the
exponent by two and the remaining factor stays odd.
When s is even, we get 2 · 3s/2+1t + 1 after 3 · (s/2 + 1) steps. Since 3s/2+1t ∈ Am is odd, the
proof follows from Lemma 2.3 and 2.4. When s is odd, we get 4 · 3(s+1)/2t+ 1 after 3(s+ 1)/2
steps. Since 3(s+1)/2t ∈ Am is odd, we use Lemma 2.1.

3. x = 8k + 3.
4k + 1 ∈ Am and use Lemma 2.3.

4. x = 8k + 5.
2k + 1 ∈ Am and use Lemma 2.1.

5. x = 8k + 7.
4k + 3 ∈ Am and use Lemma 2.4.
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