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Return of CFA: Call-Site Sensitivity Can Be Superior to

Object Sensitivity Even for Object-Oriented Programs

MINSEOK JEON and HAKJOO OH∗, Korea University, Republic of Korea

In this paper, we challenge the commonly-accepted wisdom in static analysis that object sensitivity is superior
to call-site sensitivity for object-oriented programs. In static analysis of object-oriented programs, object
sensitivity has been established as the dominant flavor of context sensitivity thanks to its outstanding precision.
On the other hand, call-site sensitivity has been regarded as unsuitable and its use in practice has been
constantly discouraged for object-oriented programs. In this paper, however, we claim that call-site sensitivity
is generally a superior context abstraction because it is practically possible to transform object sensitivity into
more precise call-site sensitivity. Our key insight is that the previously known superiority of object sensitivity
holds only in the traditional k-limited setting, where the analysis is enforced to keep the most recent k context
elements. However, it no longer holds in a recently-proposed, more general setting with context tunneling.
With context tunneling, where the analysis is free to choose an arbitrary k-length subsequence of context
strings, we show that call-site sensitivity can simulate object sensitivity almost completely, but not vice versa.
To support the claim, we present a technique, called Obj2Cfa, for transforming arbitrary context-tunneled
object sensitivity into more precise, context-tunneled call-site-sensitivity. We implemented Obj2Cfa in Doop
and used it to derive a new call-site-sensitive analysis from a state-of-the-art object-sensitive pointer analysis.
Experimental results confirm that the resulting call-site sensitivity outperforms object sensitivity in precision
and scalability for real-world Java programs. Remarkably, our results show that even 1-call-site sensitivity can
be more precise than the conventional 3-object-sensitive analysis.
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1 INTRODUCTION

łSince its introduction, object sensitivity has emerged as the dominant flavor of context
sensitivity for object-oriented languages.ž

ÐSmaragdakis and Balatsouras [2015]

Context sensitivity is critically important for static program analysis of object-oriented programs.
A context-sensitive analysis associates local variables and heap objects with context information
of method calls, computing analysis results separately for different contexts. This way, context
sensitivity prevents analysis information from being merged along different call chains. For object-
oriented and higher-order languages, it is well-known that context sensitivity is the primary means
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for increasing analysis precision without blowing up analysis cost [Jeong et al. 2017; Kastrinis and
Smaragdakis 2013; Lhoták and Hendren 2006; Li et al. 2018a; Smaragdakis and Balatsouras 2015;
Smaragdakis et al. 2014; Sridharan and Bodík 2006; Thiessen and Lhoták 2017].
There have been two major flavors of context sensitivity, namely call-site sensitivity [Sharir

and Pnueli 1981; Shivers 1988] and object sensitivity [Milanova et al. 2002, 2005], which differ in
the choice of context information. The traditional k-call-site-sensitive analysis [Sharir and Pnueli
1981] uses a sequence of k call-sites as the context of a method. By contrast, object sensitivity uses
allocation-sites as context elements: in a virtual call, e.g., a.foo(), an object-sensitive analysis
uses the allocation-site of the receiver object (a) as the context of foo. The standard k-object-
sensitive analysis [Milanova et al. 2002, 2005; Smaragdakis et al. 2011] maintains a sequence of
k allocation-sites, comprising the allocation-site of the receiver object, the allocation-site of the
receiver’s allocator, and so on.

The Status Quo. Since its inception, object sensitivity has been established as the dominant
context abstraction for object-oriented languages [Smaragdakis and Balatsouras 2015]. Ever since
Milanova et al. [2002, 2005] proposed object sensitivity, its superiority over other flavors of context
sensitivity has been reinforced by a large amount of research [Bravenboer and Smaragdakis 2009;
Jeong et al. 2017; Lhoták and Hendren 2008; Lu and Xue 2019; Smaragdakis et al. 2011; Tan
et al. 2016]. Among others, Lhoták and Hendren [2006] and Bravenboer and Smaragdakis [2009]
conducted extensive experiments to conclude that object sensitivity significantly outperforms other
alternatives including call-site sensitivity. As a result, object sensitivity has become an indispensable
component of program analysis tools for object-oriented languages [Feng et al. 2014; Fink et al.
2008; Gordon et al. 2015; Naik et al. 2006; Xu et al. 2019; Zhang et al. 2014].
In contrast, the use of call-site sensitivity has been constantly discouraged for object-oriented

programs [Jeong et al. 2017; Lhoták and Hendren 2006; Li et al. 2018a; Milanova et al. 2002, 2005;
Smaragdakis et al. 2011, 2014; Tan et al. 2016]. For example, Milanova et al. [2002, 2005] judged
call-site sensitivity as łill-suited" for object-oriented programs, Kastrinis and Smaragdakis [2013]
claimed that call-site sensitivity should be avoided because it is both imprecise and expensive, and
Smaragdakis et al. [2014] asserted call-site sensitivity is never cost-effective. As a result, call-site
sensitivity has become obsolete in practice and virtually not used anymore in program analysis
tools for object-oriented programs: ł... object-sensitive analyses have almost completely supplanted
traditional call-site-sensitive analyses for object-oriented languagesž [Smaragdakis et al. 2011].

This Work. We challenge this commonly-accepted wisdom by showing that call-site sensitivity is
generally superior to object sensitivity even for object-oriented programs. Our key insight is that
the previously established superiority of object sensitivity over call-site sensitivity is valid only
when we impose a particular restriction that the analysis should keep the most recent k context
elements, but it no longer holds in a more general setting where the restriction is eliminated.
Notably, the relative superiority of object sensitivity and call-site sensitivity gets inverted when
they are generalized with context tunneling [Jeon et al. 2018], where the analysis is free to use an
arbitrary k-length subsequence of context strings. In this generalized setting, we show that call-site
sensitivity is able to simulate object sensitivity, but object sensitivity is not powerful enough to
simulate call-site sensitivity. We note that our aim is not to debunk the previously known result.
Instead, we claim that what is currently known only persists in a limited circumstance and the
converse holds when the assumption is generalized.

To support the claim, we present Obj2Cfa, a practical technique for transforming object sensitiv-
ity into more precise, context-tunneled call-site sensitivity. Our technique takes as input an arbitrary
object-sensitive analysis with context tunneling and produces as output a context-tunneling policy
that enables call-site sensitivity to exceed the precision limit of the baseline object sensitivity
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without increasing k . Our key technical contributions to achieve this goal are the simulation and
simulation-guided learning procedures. By the simulation procedure, we infer a context-tunneling
policy with which call-site sensitivity can simulate the baseline object sensitivity. The resulting
call-site sensitivity, however, is impractical since it requires running the baseline object-sensitive
analysis as a pre-analysis. The learning phase aims to remove this burden by capturing the behavior
of the simulated policy using a dataset of programs.

We implemented our technique in Doop [Bravenboer and Smaragdakis 2009], a popular pointer
analysis framework for Java. We transformed a state-of-the-art object-sensitive pointer analysis into
the matching call-site-sensitive analysis. Evaluation with real-world Java applications shows that
the resulting call-site-sensitive analysis significantly improves the original object-sensitive analysis
in terms of both precision and scalability. Remarkably, our context-tunneled 1-call-site-sensitive
analysis is even more precise than the traditional 3-object-sensitive analysis with much smaller
costs, which confirms our claim that call-site sensitivity can be superior to object sensitivity in the
generalized setting.

Contributions.We summarize our contributions below.

• We make a novel claim that call-site sensitivity is generally superior to object sensitivity; when
the notion of k-limiting is generalized with context tunneling, call-site sensitivity can simulate
object sensitivity almost completely, but not vice versa.
• We present Obj2Cfa, a new technique for transforming a context-tunneled k-object-sensitive
analysis into a more precise, context-tunneled k-call-site-sensitive analysis. Specifically, we
make two technical contributions: the simulation (Section 4.1) and simulation-guided learning
(Section 4.2) procedures, both of which are vital to achieving the goal.
• We experimentally prove our claim by applying Obj2Cfa to a state-of-the-art object-sensitive
pointer analysis for Java. Our implementation and data are publicly available 1.

2 OUR CLAIM

In this section, we illustrate the main message of this paper with examples.

2.1 The Previously Known Superiority

First of all, we note that traditional call-site sensitivity and object sensitivity can complement each
other [Liang et al. 2005].

Benefit of Call-Site Sensitivity. Figure 1 describes a typical situation where call-site sensitivity
has better precision than object sensitivity. The example program has class D that includes the
identity function id. The main method allocates an object of class D at line 6 and calls method
id on it in three places at lines 7, 8, and 9 with different objects of type A, B, and C, respectively.
Suppose pointer analysis aims to prove that the three type-casting operations at lines 7, 8, and 9
are safe. Figure 1b shows the call-graph from 1-call-site-sensitive analysis. Note that the analysis
analyzes the method id separately for the different call-sites at lines 7, 8, and 9, and therefore is
able to prove the safety of the queries.

By contrast, k-object sensitivity is unable to prove any of the queries in the program no matter
what k value is used. Object sensitivity uses allocation-sites of receiver objects as calling contexts.
In this example, because the three method calls share the same receiver object (i.e. the object
pointed to by variable d), object sensitivity analyzes the method id with a single context element,
namely the allocation-site D, merging the three method calls (Figure 1c).

1https://github.com/kupl/OBJ2CFA
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1 class D {

2 Object id (v) {

3 return v; }

4 }

5 main() {

6 D d = new D();//D

7 A a = (A)d.id(new A()); //A, query1

8 B b = (B)d.id(new B()); //B, query2

9 C c = (C)d.id(new C()); //C, query3

10 }

(a) Example code

main
[·]

id
[7]

id
[8]

id
[9]

(b) Call-graph by 1-call-site sensitivity

main
[·]

id
[D]

(c) Call-graph by k-object sensitivity (for any k)

Fig. 1. Typical situation that benefits from call-site sensitivity

Benefit of Object Sensitivity. Figure 2 describes a representative scenario where object sensitivity
is more precise than call-site sensitivity. The example code in Figure 2a has class C that contains
k + 1 methods (id0, id1, . . . idk ), where each method idi is semantically equivalent to the identity
function because id0 is the identity function and idi (0 < i ≤ k ) calls idi−1 without modifying the
formal parameter v. The main method has four heap allocation-sites: namely, C1, C2, A, and B. At
line 13, main calls idk with the base variable c1 and parameter new A(). At line 14, idk is called
with the base variable c2 and argument new B(). Again, the goal of pointer analysis is to prove the
safety of the casting operations at lines 13 and 14. For this program, a k-call-site-sensitive analysis
produces the call-graph in Figure 2b. Note that the method id0 is analyzed under the single context
[8, . . . , 5], where the critical information where idk was originally called from is lost due to the
truncation of context strings to keep their last k elements.

Object sensitivity nicely addresses this shortcoming of call-site sensitivity. It uses the allocation-
sites, C1 and C2, to represent the contexts of the method calls to idk at lines 13 and 14, respectively.
Note that the receiver object remains the same in the subsequent calls to idk−1, . . . id0, propagating
the initial contexts down to id0 and producing the call-graph in Figure 2c. The analysis is able to
distinguish the two call chains and therefore proves the queries.

Known Superiority. Though call-site sensitivity and object sensitivity have their own strengths
and weaknesses, object sensitivity is widely known to be superior to call-site sensitivity because
real-world programs involve code patterns such as one in Figure 2 more often. Note that the existing
superiority holds empirically, rather than theoretically, based on the experimental results of prior
work (e.g., [Bravenboer and Smaragdakis 2009; Lhoták and Hendren 2008]).

2.2 Revisiting the Superiority in Generalized k-Limited Setting

Our new claim is that the known superiority of object sensitivity over call-site sensitivity no longer
holds when the notion of k-limiting is generalized with context tunneling.

Context Tunneling.Context tunneling [Jeon et al. 2018] allows an analysis to maintain an arbitrary
k-length subsequence of context strings. For example, when s = [C1,C2,C3,C4,C5] is a sequence
of context elements that may appear in an unbounded (k = ∞) context-sensitive analysis, the
traditional 3-limited analysis abstracts the context string into its suffix [C3,C4,C5]. With context
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1 class C {

2 Object id0(v) {

3 return v; }

4 Object id1(v) {

5 return this.id0(v); }

6 ...

7 Object idk(v) {

8 return this.idk−1(v); }

9 }

10 main() {

11 C c1 = new C();//C1

12 C c2 = new C();//C2

13 A a = (A)c1.idk(new A()); //A, query1

14 B b = (B)c2.idk(new B()); //B, query2

15 }

(a) Example code

main
[·]

idk
[13]

idk
[14]

...

...

id1
[13, 8, ...]

id1
[14, 8, ...]

id0
[8, ..., 5]
︸   ︷︷   ︸

k

(b) Call-graph by k-call-site sensitivity

main
[·]

idk
[C1]

idk
[C2]

...

...

id1
[C1]

id1
[C2]

id0
[C1]

id0
[C2]

(c) Call-graph by 1-object sensitivity

main
[·]

idk
[13]

idk
[14]

...

...

id1
[13]

id1
[14]

id0
[13]

id0
[14]

(d) Call-graph by 1-call-site sensitivity with tunneling

Fig. 2. Typical situation that benefits from object sensitivity

tunneling, however, the analysis is free to use any subsequence of s such as [C1,C3,C5] and
[C2,C4,C5], as a k-limited abstraction of the original context string. Note that the traditional
k-limited approach is a special case of the generalized approach with context tunneling.

Key Insight. Our key insight is summarized as follows:

• The major weakness of call-site sensitivity in the traditional setting is no longer a weakness in
the generalized k-limited setting with context tunneling.
• By contrast, object sensitivity still suffers from its limitation even with the generalization.

With context tunneling, call-site sensitivity does not suffer from its shortcoming and can now
prove the queries in Figure 2a. Suppose that we use a context-tunneling policy that chooses the first
k elements of a context string rather than the last k ones. Then, the resulting 1-call-site-sensitive
analysis produces the call-graph in Figure 2d, which is exactly the same as the call-graph of the
1-object-sensitive analysis in Figure 2c. Because the call-graphs are equivalent, the call-site-sensitive
analysis is as precise as the object-sensitive analysis, successfully proving the queries.
On the other hand, object sensitivity fails to simulate call-site sensitivity even with context

tunneling. Consider the program in Figure 1 where call-site sensitivity is typically more precise
than object sensitivity. For this program, object sensitivity cannot prove all of the queries no matter
what context-tunneling policy and k value are used. In Figure 1, object sensitivity can use the
allocation-site D as context elements. Thus, only the two context subsequences, i.e., [D] and [·],
are possible for the method id with context tunneling, all of which fail to analyze id separately for
the three different call-sites.
We clarify that, like the previously known superiority, our claim in this paper is empirical. On

the theoretical side, we do not know yet whether or not call-site sensitivity can always simulate
object sensitivity in the general setting with context tunneling, which we leave as an open question
for future work. We discuss this issue in more detail in Section 7.
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Obj2Cfa. Based on the insight, we develop Obj2Cfa, a practical technique for transforming a
given k-object-sensitive analysis into a more precise, context-tunneled k-call-site-sensitive analysis
(Section 4). The resulting analysis is (empirically) more precise than the baseline object sensitivity,
as it enjoys the benefits of both object sensitivity and call-site sensitivity. For example, it produces
precise results for both cases in Figure 1 and 2.

3 SETUP: POINTER ANALYSIS WITH CONTEXT TUNNELING

In this section, we define a pointer analysis with context tunneling.

Program.We assume a program is a sequence of instructions, where each instruction is associated
with a distinct label. An instruction is either heap allocation (x = new ()), move (x = y), store
(x .f = y), load (x = y.f ), or virtual method call (x = y.m

p
r (a)). We assume that every method (m)

has a single formal parameter (p) and return variable (r ). Given a program P to analyze, we assume
the following:

• VarP : the set of program variables.
• fldP : the set of field signatures.
• LabelP : the set of instruction labels of the program.
• MthdP : the set of methods of the program.
• MthdofP : the mapping from labels to the methods containing them (i.e. LabelP → MthdP ).
• InvoP : invocation sites (i.e. call sites, InvoP ⊆ LabelP ).
• HeapP : heap allocation sites (i.e. HeapP ⊆ LabelP ).
• CtxP : the set of calling contexts (i.e. CtxP = Label∗P ).
• HctxP : the set of heap contexts (i.e. HctxP = Label∗P ).
• mainP : the entry method of the program.

Notation. For function X : A→ B, whereA and B are sets, we write X [a 7→ b] (where a ∈ A,b ∈ B)

for the function X that is extended to map a to b. For function X : A → ℘(B), X [a
w
7→ b] (where

a ∈ A,b ⊆ B) denotes X [a 7→ X (a) ∪ b] (i.e. weak update). Given X ,Y : A→ ℘(B), X ⊔ Y denotes
λa.X (a) ∪ Y (a). Given a sequence s = a1a2 . . . an−1 and an element an , we write ⌈s ++ an⌉k for
a1a2 . . . an−1an if n < k . If n ≥ k , the result is an−k+1 . . . an−1an .

Pointer Analysis.We consider a subset-based pointer analysis with on-the-fly call-graph construc-
tion [Smaragdakis and Balatsouras 2015], which computes four pieces of information: points-to, field
points-to, reachability, and call-graph information. The points-to information, X ∈ VarP × CtxP →
℘(HeapP ×HctxP ), maps variables with contexts to sets of heaps with heap contexts. The field points-
to information,Y ∈ HeapP ×HctxP ×fldP → ℘(HeapP ×HctxP ), maps fields of heaps with their heap
contexts to sets of heaps with heap contexts. The reachability information, R ∈ Mthd → ℘(Ctx),
maps methods to their reachable contexts. A call-graph, G ∈ ℘(InvoP × CtxP ×MthdP × CtxP ), is
a set of context-sensitive call edges, where (l, ctx1,m, ctx2) ∈ G indicates that methodm is called
from the invocation-site l and the caller and callee contexts are ctx1 and ctx2, respectively. The
analysis is flow-insensitive and aims to compute the least fixed point of the semantic function F

defined as follows:
FT ,U
P,k
= λ(X ,Y ,R,G ).

⊔

l ∈LabelP

f T ,U
l,k

(X ,Y ,R,G )

where k ∈ N is the maximum context depth to distinguish and f T ,U
l,k

is the transfer function for
the instruction whose label is l . T and U are context-tunneling abstraction and context-update
function, respectively, which will be explained shortly. Running the analysis is to compute fixF :

fixFT ,U
P,k
= FT ,U

P,k
(⊥X ,⊥Y ,⊥R ,⊥G ) ⊔ FT ,U

P,k
(FT ,U

P,k
(⊥X ,⊥Y ,⊥R ,⊥G )) ⊔ . . .
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where the bottom elements are defined as follows:

⊥X = λ(x , c ).∅, ⊥Y = λ(l ,hc, f ).∅, ⊥R = λm.

{

{ϵ } ifm = mainP
∅ otherwise

, ⊥G = ∅.

Transfer Function. The transfer function for the allocation, move, store, and load instructions is
standard. Let (X ′,Y ′,R′,G ′) be f T ,U

l,k
(X ,Y ,R,G ). When the command is allocation (x = new()), it

extends the points-to map so that the variable x points-to the heap l under the reachable context
ctx ∈ R (Mthdof(l )):

X ′ =
⊔

ctx∈R (Mthdof(l ))

X [(x , ctx)
w
7→ {(l , ctx)}].

For a store command (x .f = y), the field points-to information is updated as follows:

Y ′ =
⊔

ctx∈R (Mthdof(l ))

Y [(l , hctx, f )
w
7→ {(l ′, hctx′)}]

where (l ,hctx ) ∈ X (x , ctx ) and (l ′, hctx′) ∈ X (y, ctx). The points-to information is updated as
follows for a load (x = y.f ) instruction:

X ′ =
⊔

ctx∈R (Mthdof(l ))

X [(x , ctx)
w
7→ {(l , hctx)}]

where (l , hctx) ∈ Y (l ′, hctx′, f ) and (l ′, hctx′) ∈ X (y, ctx). The reachability map and call-graph
remain the same for the above instructions (i.e. R′ = R andG ′ = G). The transfer function for move
instruction (x = y) combines the points-to set of y into that of x without modifying R and G.

The transfer function for method calls is less standard as it should account for context tunneling.
To support context tunneling [Jeon et al. 2018], we assume a context-tunneling space S is given.
The space S can be defined in various ways and the choice does not affect the soundness of the
analysis. In this paper, we simply define the space to be the set of all invocation sites, i.e., S = InvoP
and letT ⊆ S be a tunneling abstraction given before the analysis. For method call x = y.m

p
r (a), the

transfer function, f T ,U
l,k

, first generates the callee’s context ctx′ using the context-update function
U , ctx′ = U (ctx,T ,X , l ,y,k ), which takes information available at the call-site. The output ctx′ of
U will be shortly defined for each context sensitivity flavor. Once ctx′ is computed, the analysis
makes the formal parameter p under ctx′ have the points-to set of the actual parameter a under ctx
and the points-to set of the return variable r is transferred to the variable x . The resulting X ′ is
defined as follows:

⊔

ctx∈R (Mthdof(l ))

X [(p, ctx′)
w
7→ X (a, ctx), (x , ctx)

w
7→ X (r , ctx′)]

and the reachability and call-graph are updated accordingly: R′ = R[m
w
7→ {ctx′}] and G ′ =

G ∪ {(l , ctx ,m, ctx ′)}.

Context Update. Let us define the context-update functionU . For object sensitivity, it is defined
as follows:

U (ctx,T ,X , l ,y,k ) =

{

⌈hctx ++ h⌉k l < T ,

hctx l ∈ T
(1)

where (h, hctx) ∈ X (y, ctx). When a method is called from an invocation site l with the base variable
y and caller’s context ctx, the analysis first looks at the heap h (and its context hctx) that the variable
y under ctx points to, and creates the callee’s context by appending the heap (h) to its heap context
(hctx). The context may be truncated to keep the last k elements at most (i.e. ⌈hctx ++ h⌉k ). Note
that U creates the new context only when l < T (i.e. no context tunneling). Otherwise (l ∈ T ), it
applies context tunneling and propagates the existing context (hctx).
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1 class D {

2 Object id(v) {

3 return v;}

4 Object id1(v) {

5 return this.id(v);}

6 void m() {

7 A a = (A)this.id(new A());//A1, query1

8 B b = (B)this.id(new B());//B1, query2

9 }

10 }

11 void main() {

12 D d1 = new D();//D1

13 D d2 = new D();//D2

14 D d3 = new D();//D3

15

16 A a3 = (A)d1.id1(new A());//A2, query3

17 B b3 = (B)d2.id1(new B());//B2, query4

18 d3.m();

19 }

Fig. 3. Running example

For call-site sensitivity,U is defined as follows:

U (ctx,T ,X , l ,y,k ) =

{

⌈ctx ++ l⌉k l < T ,

ctx l ∈ T
(2)

When l < T , the analysis appends the current invocation site l to ctx. With context tunneling (l ∈ T ),
it uses the caller’s context ctx for the callee’s.

InstanceAnalyses.Given a program P and its tunneling abstractionT ⊆ InvoP , wewrite callk (P ,T )
and objk (P ,T ) for the k-call-site- and k-object-sensitive analyses, respectively. In the rest of the
paper, we fix k and omit the subscript k from callk and objk . These instance analyses are used with
a context-tunneling policy. A context-tunneling policy T is a function that maps a program P into a
tunneling abstraction for P :

T (P ) ⊆ InvoP .

With a policy T , we perform the analysis for a program P as follows: call(P ,T (P )) or obj(P ,T (P )).

4 OBJ2CFA: TRANSFORMING OBJECT SENSITIVITY TO CALL-SITE SENSITIVITY

We now present our technique,Obj2Cfa. Given an object-sensitive analysis specified by an arbitrary
tunneling policy Tobj, our technique transforms it to another tunneling policy Tcall such that the call-
site-sensitive analysis with Tcall becomes more precise than the baseline object-sensitive analysis
with Tobj.

To achieve this,Obj2Cfaworks in the two steps: simulation and learning. It first converts Tobj into
a simulated policy Tsim. With Tsim, call-site sensitivity becomes more precise than object sensitivity
with Tobj but running the analysis with Tsim is expensive as it uses the baseline object-sensitive
analysis as a pre-analysis. The purpose of the second step is to remove this overhead by learning the
behavior of Tsim from training data. The learned policy Tcall is as precise as Tsim but more efficient
as it does not rely on the simulation procedure.

4.1 Simulation

The first technical contribution of this paper is the simulation procedure. Given a program P and
its tunneling abstraction Tobj ⊆ InvoP , where Tobj is given by Tobj, i.e., Tobj = Tobj (P ), the goal of
simulation is to infer a tunneling abstraction Tcall ⊆ InvoP such that call(P ,Tcall) becomes more
precise than obj(P ,Tobj).

Running Example. We illustrate the simulation procedure with the example program in Figure 3.
The code contains class D that has three methods id, id1, and m. Methods id and id1 are identity
functions. The method m contains two method invocations at lines 7 and 8, which call id with new
A and B objects. The main method creates three objects at the allocation-sites D1, D2, and D3, and
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(a) 1-object sensitivity
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(b) 1-call-site sensitivity
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(c) 1-call-site sensitivity

with Tcall = {5, 7, 8}
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(d) 1-call-site sensitivity

with Tcall = {5}

Fig. 4. Call-graphs of running example produced by object sensitivity and call-site sensitivity.

stores them in variables d1, d2 and d3, respectively. At line 16, main calls id1 with a new object of
type A and the base variable d1. At line 17, id1 is called with a new object with type B and base
variable d2. At line 18, main also calls m with base variable d3. We assume that the code has four
queries, which ask the safety of casting operations at lines 7, 8, 16, and 17. Note that all of these are
safe since id and id1 are identity functions.

In this example, for simplicity, we assume an 1-object-sensitive analysis without context tunneling
(i.e. Tobj = ∅) is given but our technique is applicable to object sensitivity with arbitrary k and
tunneling abstractionTobj ⊆ InvoP . Figure 4a shows the call-graph produced by the baseline 1-object-
senstivie analysis, where a call-graph edge is represented by invocation-site, caller method, caller

context, callee method, and callee context. For example, the edge id1[D1]
5
→ id[D1] indicates

that method id is called from id1 at invocation-site 5, where the callee and caller contexts are D1.
Note that this object-sensitive analysis is not precise enough to prove all queries. Although it can
prove queries at lines 16 and 17 as it distinguishes the two different contexts of id1, it fails to prove
queries at lines 7 and 8 because it uses the same context [D3] for id at both call-sites.
Figure 4b shows the call-graph obtained by the ordinary 1-call-site-sensitive analysis without

context tunneling. Note that the precision of the analysis is incomparable to that of the baseline
1-object sensitivity. Because the analysis uses the call-site as the calling context, it is able to prove
the queries at lines 7 and 8 by separately analyzing the two calls to id. However, it fails to prove
the queries at lines 16 and 17 as the variable v in id under context [5] points-to both heap objects
A2 and B2 that in turn propagates back to the variables a and b in the main method.

Inferring Tunneling Abstraction. Simulation is a two-step process. It first runs the baseline
object-sensitive analysis (i.e. obj(P ,Tobj)) to obtain its call-graphG ⊆ InvoP × CtxP ×MthdP × CtxP .
Next, it analyzes the structure of G and infers a tunneling abstraction Tcall that makes call-site
sensitivity to simulate G. At a high-level, we infer three kinds of invocation sites and define

Tcall = (I1 ∪ I2) \ I3

where I1, I2, and I3 are invocations sites in P . Intuitively, I1 and I2 denote the invocation sites that
require context tunneling in order for call-site sensitivity to simulate object sensitivity. On the
other hand, I3 is the invocation sites where context tunneling must be avoided to preserve the
original precision of call-site sensitivity.
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Our key idea to infer I1 and I2 is to assume that G was produced by a context-tunneled call-site-
sensitive analysis and infer backward its tunneling abstraction. To this end, we identify and exploit
two fundamental properties of context-tunneled call-site sensitivity.

The first property is that the callee method’s context becomes equivalent to the caller’s context
when context tunneling is applied during call-site sensitivity. This is because, in call-site sensitivity,
applying context tunneling at an invocation site always makes the called method inherit the caller’s
context. Thus, we scan each call-graph edge (l , c,m, c ′) of G and identify those that have this
property (c = c ′). We define I1 to be the set of invocation sites of all such edges:

I1 = {l ∈ InvoP | (l , c,m, c
′) ∈ G, c = c ′}.

For example, I1 is {5, 7, 8} for the call-graph in Figure 4a, where the invocation-site 5 comes from
the call-graph edges (5, D1, id, D1) and (5, D2, id, D2), 7 comes from (7, D3, id, D3), and 8 comes
from (8, D3, id, D3).
In practice, applying context tunneling at I1 gives call-site sensitivity immunity against nested

call chains that are popular in object-oriented programs. For example, Figure 4a shows that object
sensitivity precisely distinguishes two invocations of id according to their base objects D1 and D2.
In contrast, conventional call-site sensitivity must use larger k to precisely analyze those nested
call chains.
The second property of context-tunneled call-site sensitivity is that different caller contexts

imply different callee contexts. Suppose two different call-graph edges (l , c1,m, c ′1) and (l , c2,m, c
′
2),

where the last (i.e., kth) context element of c1 is different from that of c2, are generated in call-site
sensitivity. If context tunneling was applied at l , then the last context elements of c ′1 and c

′
2 are

certainly different because the callee should inherit the caller’s contexts (i.e. c1 = c ′1 and c2 = c
′
2).

We collect invocation sites in G with this property:

I2 = {l ∈ S | ∀(l, c1,m, c
′
1), (l, c2,m, c

′
2) ∈ G .last(c1) , last(c2) =⇒ last(c ′1) , last(c ′2)}

where S denotes the invocation sites where a method is called under two different contexts:

S = {l ∈ InvoP | ∃(l , c1,m, c1
′), (l , c2,m, c2′) ∈ G, last(c1) , last(c2)},

and the function last takes a context and returns its last context element, i.e., last(a1a2 . . . ak ) = ak .
I2 denotes a sound and complete property of context-tunneled call-site sensitivity. That is, if context
tunneling is not applied to l , the callee methods’ contexts inevitably share the last context element
l . In Figure 4a, I2 is {5} because the invocation-site 5 has two outgoing edges (5, D1, id, D1) and
(5, D2, id, D2), where D1 , D2 =⇒ D1 , D2 holds. The invocation-sites 7 and 8 do not belong to I2
because they have only one call-graph edge. In Figure 4a, I1 includes I2, but in general, I2 may be
distinct from I1 as shown in the following call-graph:

main

[·]

D.m

[D1]

D.m

[D2]

C.m

[C1]

C.m

[C2]

4

5

9

9

where I1 = ∅ and I2 = {9}. A detail example is described in Section 1.2 of our supplementary
material 2.

Note that applying context tunneling at I1 ∪ I2 = {5, 7, 8} makes call-site sensitivity simulate the
baseline object sensitivity (Figure 4c and Figure 4a are equivalent). However, it loses the precision
benefit of the original call-site sensitivity (compare Figure 4c vs. Figure 4b). The purpose of I3 is to

2https://zenodo.org/record/5560499
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1 class Container {

2 Object elem;

3 void add(Object el) {

4 this.elem = el;}

5 Itr itr() {

6 Object e = this.elem;

7 Itr itr = new Itr(e);//It

8 return itr;}

9 }

10 class Itr {

11 Object next;

12 Itr(Object obj) {

13 this.next = obj;}

14 Object next() {

15 return this.next;}

16 }

17 void main() {

18 Container c1 = new Container();//C1

19 c1.add(new A());//A

20 Itr i1 = c1.itr();

21 object o1 = i1.next();

22

23 Container c2 = new Container();//C2

24 c2.add(new B());//B

25 Itr i2 = c2.itr();

26 object o2 = i2.next();

27 }

Fig. 5. Example code

avoid this precision loss. We define I3 to be the set of invocation-sites where the called method has
a single context:

I3 = {l ∈ InvoP | ∀(l , c1,m, c
′
1), (l , c2,m, c

′
2) ∈ G . c

′
1 = c

′
2}.

In Figure 4a, I3 equals to {7, 8, 16, 17, 18}. For example, I3 includes 7 because only one call-graph
edge exists out of that invocation-site and I3 does not include 5 because it has two outgoing edges
to the same method (id) under different contexts ([D1] and [D2]). Intuitively, I3 represents the
set of invocation-sites that make conventional call-site sensitivity at least as precise as the given
object sensitivity; avoiding context tunneling at I3 would make call-site sensitivity analyze the
called method more precisely than (or at least equal to) object sensitivity. It is because updating
context with the invocation sites ensures that the method invocation is not conflated with another
invocation from different invocation-sites which is not the case for object sensitivity. In summary,
we infer Tcall = {5} from Figure 4a: Tcall = (I1 ∪ I2) \ I3 = ({5, 7, 8} ∪ {5}) \ {7, 8, 16, 17, 18} = {5}.

Additionally, we apply context tunneling to the invocation-sites if all their parameters are passed
from those of the caller methods. For example, {5} in our example belongs to this case because all
the parameters (i.e., this and v) come from the caller. Such invocations need context tunneling
because caller methods’ contexts determine the value of the parameters. For the same reason, we
avoid context tunneling if all the parameters are allocated just before the invocations (e.g., {16, 17}
in our example). The invocation-sites are useful because using them as context elements determines
the value of the invocations’ parameters.

Effectiveness in the Real-World. To show the effectiveness of simulation more clearly, we provide
a representative real-world example. Also, this example shows that call-site sensitivity can simulate
object sensitivity with a nontrivial tunneling abstraction (Tobj , ∅).
Containers and iterators have been popular to exemplify the strength of object sensitivity

(e.g. [Jeon et al. 2018; Milanova et al. 2005; Tan et al. 2016]), as they are prevalent in object-oriented
programs. Figure 5 shows a typical example. In Figure 5, the Container class has its iterator of
which the field wraps the container’s data, and the data is obtained by the calling iterator’s method.

In this case, 1-object sensitivity needs context tunneling to distinguish all the method calls.
The conventional 1-object-sensitive analysis is not precise as the two iterators share the same
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(a) 1-object sensitivity with Tobj = {7, 21, 26}
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(b) 1-call-site sensitivity with Tcall = {7}

Fig. 6. call-graphs produced by 1-object sensitivity with context-tunneling and 1-call-site sensitivity

heap allocation-site It. Consider a tunneling abstraction Tobj = {7, 21, 26}. With this tunneling
abstraction, 1-object sensitivity produces precise results with the call-graph shown in Figure 6a.
With our technique, call-site-sensitivity can simulate the call-graph produced by the context-

tunneled object-sensitive analysis. From the call-graph in Figure 6a, our technique finds out

I1 = {7}, I2 = {7}, I3 = {19, 20, 21, 24, 25, 26}.

and produces a tunneling abstraction Tcall = {7}. Figure 6b shows the call-graph of 1-call-site
sensitivity with the tunneling abstraction, which is exactly the same as that of the baseline object-
sensitive analysis in Figure 6a. Note that 1-object sensitivity and 1-call-site sensitivity use different
tunneling abstractions, i.e., Tcall = {7} vs. Tobj = {7, 21, 26}.
In the supplementary material, we show that our technique can handle more real-world cases,

namely precision-critical patterns [Li et al. 2018a]. Li et al. [2018a] identified fairly representative
and exhaustive patterns that require object sensitivity in real-world Java programs; applying 2-
object sensitivity only to the methods with those patterns is sufficient to achieve 98.8% of the full
precision [Li et al. 2018a]. Conventional call-site-sensitive analysis is ineffective to handle such
patterns as they require the analysis to maintain deep calling contexts. With context tunneling,
however, our technique enables call-site sensitivity to simulate object sensitivity in all cases. We
provide detailed description of the patterns and how our technique works in Section 1 of the
supplementary material.

Simulated Policy. Now we define the simulated policy Tsim. Let simulate be the simulation process
described above. As input, simulate takes a program P and a tunneling abstraction Tobj ⊆ InvoP of
baseline object sensitivity. Running the simulation procedure, denoted simulate(P ,Tobj), produces
a tunneling abstraction Tcall ⊆ InvoP for call-site sensitivity. With simulate, we can transform Tobj
into Tsim as follows:

Tsim = λP . simulate(P ,Tobj (P )). (3)

Although the simulated policy Tsim makes call-site sensitivity more precise than the baseline object
sensitivity, using Tsim is impractical because the simulation procedure incurs the overhead of
running the baseline object-sensitive analysis.

4.2 Simulation-Guided Learning

The second technical contribution of this paper is simulation-guided learning that aims to remove
the overhead of Tsim while maintaining its precision. To do so, from a dataset of programs P =
{P1, P2, . . . , Pn }, we learn the final policy, i.e., Tcall, that captures the behavior of Tsim without
invoking the expensive simulation procedure.

Parameterized Policy. To learn a policy from data, we need to define a parameterized policy,
denoted Tf , whose behavior is fully controlled by the parameter f . The goal of learning then is to
find an appropriate parameter from data.
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For parameterization, we adapt the idea of prior work [Jeong et al. 2017], where the parameter
f is a boolean formula over atomic features. We assume that a set A = {a1,a2, . . . ,am } of atomic
features is given (we explain them shortly). Formally, a feature ai is a function from programs to
predicates on invocation sites, i.e., ai (P ) : InvoP → {true, false}. That is, an invocation site l in a
program P has feature ai iff ai (P ) (l) is true. In prior work [Jeon et al. 2018], atomic features are
combined by a boolean formula f to express complex, in particular disjunctive, properties:

f → true | false | ai ∈ A | ¬f | f1 ∧ f2 | f1 ∨ f2

A boolean formula f denotes a set of invocation sites. We write [[f ]]P for the denotation of f with
respect to P : [[true]]P = InvoP , [[false]]P = ∅, [[ai ]]P = {l ∈ InvoP | ai (P ) (l )}, [[¬f ]]P = InvoP \ [[f ]]P ,
[[f1 ∧ f2]]P = [[f1]]P ∩ [[f2]]P , [[f1 ∨ f2]]P = [[f1]]P ∪ [[f2]]P . Then, with a boolean formula f , we
define the parameterized policy Tf as follows:

Tf (P ) = [[f ]]P .

Learning Objective. The goal of learning is to find a formula f that enables Tf to capture the
behavior of Tsim on the training programs; we aim to find a formula f such that

∑

P ∈P

call(P ,Tf (P )) ≈
∑

P ∈P

call(P ,Tsim (P )) (4)

where we assume call returns the number of unproved queries (e.g., #may-fail casts, where lower
is more precise). Note that our learning objective is more challenging than those considered in
prior work [Jeon et al. 2018; Jeong et al. 2017]. In prior work, the objective was typically to find a
łgood-enoughž policy but, in our case, the learned policy should capture the specific behavior of
the simulated policy.

Learning Algorithm.We present a new, simulation-guided learning algorithm that can effectively
solve the problem in Eq. (4). In Section 5.2, we show that the existing, unguided learning algo-
rithm [Jeon et al. 2018] is not powerful enough to solve the problem of capturing the behavior of
the simulated policy (Tsim).
The overall structure of our algorithm is given in Algorithm 1. We invoke the algorithm by

Learn(P,A ∪ ¬A,Tsim), where ¬A = {¬a | a ∈ A}, so that the formula f is initially set to the
disjunction of all atomic features and their negation: f = a1 ∨ ¬a1 ∨ a2 ∨ ¬a2 · · · ∨ am ∨ ¬am ,
where a1,a2, . . . ,am ∈ A (line 2). Then, we repeat the loop at lines 4ś14. At the beginning of each
iteration, the formula f is in disjunctive normal form; f is of the form c1 ∨ c2 ∨ · · · ∨ ck , where
ci is a conjunctive clause. A single refinement step for f is done by choosing a clause c in f (via
ChooseClause at line 5), choosing an atomic feature (via ChooseAtom at line 6), and replacing c
in f by c ∧ a (line 8). If the quality of the refined formula f ′ has been improved over the original
formula f (line 9), we set f to f ′ and otherwise discard f ′. This process is repeated until no more
refinement is possible. To check this termination condition, the algorithm maintains Γ that maps
clauses to available refiners (line 3, 10, and 12).
The key feature of our algorithm is to steer the search toward the desired solutions by re-

ceiving guidance from the simulated policy (Tsim). The guidance happens in the three compo-
nents, i.e., ChooseClause, ChooseAtom, and Improved. Given a formula f = c1 ∨ c2 ∨ · · · ∨ ck ,
we choose a clause whose behavior most deviates from Tsim over the training programs; that is,
ChooseClause( f ,Tsim, P) chooses c in f that maximizes the difference between [[c]]P and Tsim:

ChooseClause( f ,Tsim, P) = argmaxc ∈f
∑

P ∈P |[[c]]P \ Tsim (P ) |.
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Algorithm 1 Overall learning algorithm

Input: Training programs P, features A, and simulated policy Tsim
Output: A boolean formula f

1: procedure Learn(P,A,Tsim)
2: f ← a1 ∨ a2 ∨ · · · ∨ ak (A = {a1,a2, . . . ,ak })

3: Γ ← λc ∈ f .A \ {a | a ∈ c}

4: repeat

5: c ← ChooseClause( f ,Tsim, P)

6: a ← ChooseAtom(c, Γ,Tsim, P)

7: c ′ ← c ∧ a

8: f ′ ← Replace c in f by c ′

9: if Improved( f ′, f ,Tsim, P) then

10: Γ ← Γ[c ′ 7→ Γ(c ) \ {a}], f ← f ′

11: else

12: Γ ← Γ[c 7→ Γ(c ) \ {a}]
13: end if

14: until no more refinement is possible (∀c . Γ(c ) = ∅)
15: return f

16: end procedure

To refine the chosen clause c , ChooseAtom(c, Γ,Tsim, P) chooses an atom a ∈ Γ(c ) that maximizes
the following:

∑

P ∈P |Tsim (P ) ∩ [[c]]P ∩ [[a]]P |.

Intuitively, it chooses the atom that most conservatively refines the clause toward the simulation
result. To this end, it selects a that maximizes Tsim (P )∩ [[a]]P (refining toward the simulation result)
and [[c]]P ∩ [[a]]P (conservatively refining c). With the chosen c and a, the formula f is specified to
f ′ by replacing c in f by c ∧ a. To check whether f ′ improves over f , we evaluate the formulas
with the following objective function:

O( f ,Tsim, P) =
∑

P ∈P call(P ,Tf (P ) ∩ Tsim (P )).

Given a formula, the objective function runs the analysis over the training programs with the
intersection of the current tunneling policy (Tf ) and the simulated policy (Tsim). The condition
Improved( f ′, f ,Tsim, P) is true iff O( f ′,Tsim, P) ≤ O( f ,Tsim, P). In the objective function, note that
we evaluate the performance of Tf (P )∩Tsim (P ) instead of Tf (P ). This is a critical step to avoid local
minima. For example, suppose we have formulas f1 and f2, where f2 is obtained by refining f1, and
that both [[f1]]P and [[f2]]P are supersets of Tsim (P ) (i.e. Tsim (P ) ⊆ [[f2]]P ⊆ [[f1]]P ). Although f2 can
be refined further toward Tsim, such refinement can be rejected as Tf2 may have poorer precision
than Tf1 because tunneling abstraction is not monotone with respect to precision [Jeon et al. 2018].
Thus, the learning algorithm fails to make a further progress, ending up with a local minimum
f1. With our objective function, however, the learning algorithm can avoid such a local minimum
because Tf1 (P ) ∩ Tsim (P ) = Tf2 (P ) ∩ Tsim (P ) = Tsim (P ). In Section 2 of the supplementary material,
we provide a simple running example that illustrates how Algorithm 1 learns a formula f .

Feature Engineering. The success of learning depends also on the atomic features (A). We used
a total of 35 atomic features in Table 1, all of which describe syntactic properties of invocation
sites. Here, we identify invocations with called methods on them. Features A1śA10 and B1śB6
came from [Jeon et al. 2018]. Features A1śA10 describe methods whose signatures contain the
corresponding strings. For example, when a method’s signature string is łjava.lang.String: int
length()ž, the method has features A1, A2, A4, A7, and A9. Features B1śB6 describe properties of
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Table 1. Atomic features (A) used in our method

A1 łjavaž A2 łlangž A3 łsunž A4 ł()ž A5 łvoidž
A6 łsecurityž A7 łintž A8 łutilž A9 łStringž A10 łinitž

B1 Method is contained in a nested class B2 Method contains local assignments
B3 Method contains local variables B4 Method is contained in a large class
B5 Method contains a heap allocation B6 Method is a static method

C1 Method is called on this (i.e. this.m(...)) C2 An argument is allocated in the same method
C3 Method is called on object of static field C4 Method is called else where in the same method
C5 The base variable is passed to an initializer C6 The containing method’s modifier is łprotectedž
C7 The containing method has exception handling C8 All parameters are passed from caller method
C9 All parameters are initialized just before the calls C10 In łjava.util.regexž class
C11 Invoke constructor (i.e. new C(...)) C12 All the caller method’s arguments’ type is integer
C13 Caller method takes more than 2 arguments C14 In łjava.io.*ž class
C15 In łjava.util.loggingž class C16 Takes at least 2 arguments
C17 Virtual method calls in application class C18 Callee method’s name is łclonež
C19 C16 ∧¬ C6 ∧¬ C1

method bodies. For example, feature B1 indicates whether a method is defined in a nested class or
not

Using existing features onlywas insufficient andwe newly designed features C1śC19 in Table 1. In
our case, feature engineeringwas not very difficult as it can be guided by the simulated policyTsim. To
obtain those features, we initially ran our learning algorithm on training data with existing features
(A1śA10 and B1śB6) only, which resulted in a parameter f with which the learned policy (Tf ) did
not satisfy the learning objective. We investigated the reason why Tf fails to capture the behavior
of Tsim by analyzing the difference between Tsim and Tf (i.e. Tsim (P ) \ Tf (P ) and Tf (P ) \ Tsim (P )).
That is, our goal was to identify features a1 and a2 that minimize

∑

P ∈P[[a1]]P ⊕ (Tsim (P ) \ Tf (P ))

and
∑

P ∈P[[a2]]P ⊕ (Tf (P ) \ Tsim (P )), respectively. We included the new features a1 and a2 in the
feature set and ran the algorithm again. We repeated this process until the policy space was large
enough to contain solutions and the learning algorithm could find one of them.

5 EXPERIMENTAL RESULTS

We experimentally prove our claim by evaluating Obj2Cfa on real-world programs. Main research
questions are as follows:

• Does our claim hold in the real-world? Can call-site sensitivity be significantly superior to
object sensitivity for real-world programs? How precise and scalable can the context-tunneled
call-site-sensitive analysis be in practice?
• Impact of simulation and learning: Is simulation necessary? How accurately can our tech-
nique simulate object sensitivity? Is the simulation-guided learning necessary to capture the
behavior of the simulated policy? How important are the features in learning?

Experimental Setting.We implemented Obj2Cfa on top of Doop [Bravenboer and Smaragdakis
2009], a popular pointer analysis framework for Java [Jeon et al. 2018; Jeong et al. 2017; Li et al.
2018b; Smaragdakis et al. 2014; Tan et al. 2016]. We used the publicly-available implementation of
context tunneling given by Jeon et al. [2018] and newly implemented our simulation (Section 4.1)
and learning (Section 4.2) techniques in Doop. We conducted all experiments on a machine with
Intel i7 CPU and 64GB memory running the Ubuntu 16.04 64bit operating system.
We used 12 Java programs used by Jeon et al. [2018], of which 10 came from the DaCapo 2006

benchmarks [Blackburn et al. 2006] (luindex, lusearch, antlr, pmd, fop, eclipse, xalan, chart, bloat,
and jython), and the remaining two (checkstyle and jpc) are real-world open-source programs.
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Following prior work [Jeon et al. 2018; Smaragdakis et al. 2014], we classified those 12 programs
into 4 small (luindex, lusearch, antlr, and pmd) and 8 large programs. We used the group of small
programs as training data, from which our context-tunneling policy Tcall is learned, and used large
programs as test data to evaluate the policy for unseen programs.
Using Obj2Cfa, we transformed 1objH+T, a context-tunneled 1-object-sensitive analysis devel-

oped by Jeon et al. [2018], into our 1-call-site-sensitive analysis, denoted 1callH+SL. We chose
1objH+T as baseline because it is one of the best object-sensitive analyses available today, which
boosts the conventional 1-object-sensitive analysis using a well-tuned context-tunneling policy.
For example, 1objH+T is empirically more precise than conventional 2-object-sensitive analysis
(2objH), which is considered to be highly precise [Jeon et al. 2020; Jeong et al. 2017; Li et al. 2018a,b;
Smaragdakis et al. 2014], yet more scalable than 1-object sensitivity [Jeon et al. 2018]. We obtained
the tunneling policy of 1objH+T from the publicly available artifact of Jeon et al. [2018]. From
1objH+T, we first applied our simulation technique (Section 4.1) to produce the corresponding
simulated call-site sensitivity, denoted 1callH+S. Then, we used our learning algorithm (Section 4.2)
to obtain the final call-site-sensitive analysis, 1callH+SL. Note that 1callH+S runs 1objH+T as a
pre-analysis but 1callH+SL does not (thanks to learning).
Our main objective is to compare 1objH+T and 1callH+SL, but we compare with some notable

analyses as well to see the advance more clearly. In summary, we compare the following analyses:

• 1objH+T: a state-of-the-art context-tunneled 1-object-sensitive analysis [Jeon et al. 2018]
• 1callH+S: the simulated 1-call-site-sensitive analysis obtained from 1objH+T via simulation
• 1callH+SL: our final 1-call-site sensitive analysis (obtained from 1callH+S via learning)
• 2objH: 2-object-sensitive analysis without tunneling [Smaragdakis et al. 2011]
• 1callH+T: the existing state-of-the-art 1-call-site sensitivity with tunneling [Jeon et al. 2018]

2objH is available in Doop. 1callH+T is available in the artifact provided by Jeon et al. [2018]. All
analyses use 1-context-sensitive heap. For precision metric, we mainly use may-fail casts.

5.1 Performance of 1callH+SL

Table 2 shows that our analysis (1callH+SL) significantly outperforms other analyses in both preci-
sion and cost, confirming our claim that call-site sensitivity can be superior to object sensitivity for
real-world programs. In particular, it beats by far the baseline object sensitivity (1objH+T) in preci-
sion for all programs. For example, 1objH+T reports 1,253may-fail casts for fop but 1callH+SL reduces
the number to 1,072. Also, 1callH+SL is more scalable than 1objH+T. For example, 1callH+SL takes
2,731 seconds to analyze jython while 1objH+T times out.

We note that our 1-call-site-sensitive analysis is even more precise than the traditional 3-object-
sensitive analysis with 2-context-sensitive heap (3obj2H):

Program
1callH+SL 3obj2H

#fail-casts Time(s) #fail-cast Time(s)

luindex 357 40 435 564
antlr 477 62 543 561
pmd 707 65 782 584

where we compare the results only for the three small programs because 3obj2H does not scale
for other programs. Note that 3obj2H is the most precise object-sensitive analysis evaluated in the
literature [Lu and Xue 2019; Tan et al. 2017] and 1callH+SL substantially improves its precision
with much smaller costs.

The performance of 1callH+SL is completely beyond the reach of existing call-site-sensitive
analyses. 1callH+T is the state-of-the-art call-site sensitivity, which is more precise and faster than
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Table 2. Precision and cost comparison of our analysis (1callH+SL) against various context-sensitive analyses:

1objH+T, 2objH, 1callH+T, and 1callH+S. #may-fail-casts: the number of potential may-fail casts (down-casting)

in the program. #VarPtsTo: the size of the context-insensitive variable points-to sets. Time(s): the end-to-end,

total amount of time needed to run each analysis. For all metrics, lower is better.

program Metric 1callH+SL 1callH+S 1objH+T 2objH 1callH+T

T
ra
in
in
g
pr
og

ra
m
s

luindex
VarPtsTo 250,012 245,470 256,531 255,545 800,715
#may-fail-casts 357 360 462 496 784
time elapsed(s) 40 86 37 40 82

lusearch
VarPtsTo 264,728 260,204 271,765 270,710 890,529
#may-fail-casts 371 374 469 508 843
time elapsed(s) 45 94 39 82 85

antlr
VarPtsTo 302,226 297,268 309,671 308,643 965,445
#may-fail-casts 477 477 570 611 945
time elapsed(s) 62 123 52 52 128

pmd
VarPtsTo 306,462 300,391 329,415 327,295 1,116,506
#may-fail-casts 707 711 812 846 1,200
time elapsed(s) 65 128 56 138 138

T
es
ti
n
g
pr
og

ra
m
s

eclipse
VarPtsTo 353,657 337,496 351,898 345,806 1,241,995
#may-fail-casts 569 573 698 729 1,073
time elapsed(s) 48 159 47 58 136

xalan
VarPtsTo 410,440 394,522 401,556 400,872 1,660,901
#may-fail-casts 576 586 680 720 1,137
time elapsed(s) 71 590 377 2,288 208

chart
VarPtsTo 501,615 496,676 502,913 500,357 4,694,330
#may-fail-casts 883 942 1,011 1,055 2,376
time elapsed(s) 96 575 84 382 805

fop
VarPtsTo 650,218 637,213 726,777 720,031 3,467,105
#may-fail-casts 1,072 1,072 1,253 1,270 1,977
time elapsed(s) 206 407 137 493 500

bloat
VarPtsTo 1,136,393 1,136,366 1,126,688 1,114,648 3,454,301
#may-fail-casts 1,266 1,285 1,374 1,407 1,949
time elapsed(s) 498 3,306 371 2,463 805

jython
VarPtsTo 1,067,711 N/A - - 3,085,401
#may-fail-casts 845 N/A - - 1,331
time elapsed(s) 2,731 N/A >10,800 >10,800 188

jpc
VarPtsTo 1,304,810 1,118,622 1,142,496 1,114,946 6,667,910
#may-fail-casts 1,639 1,642 1,795 1,814 2,620
time elapsed(s) 493 699 262 1,737 1,511

checkstyle
VarPtsTo 307,378 299,101 327,629 314,857 1,141,902
#may-fail-casts 465 472 591 620 913
time elapsed(s) 83 220 99 220 139
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Table 3. Precision of call-graph related clients (#call-graph-edges, #reachable-methods, #polymorphic-calls)

of the analyses. Again, lower is better for all metrics.

program Metric 1callH+SL 1callH+S 1objH+T 2objH 1callH+T

T
ra
in
in
g
pr
og

ra
m
s

luindex
#call-graph-edges 36,578 36,426 36,504 36,487 40,830
#reachable-methods 7,710 7,699 7,702 7,702 7,879
#polymorphic-calls 908 900 905 903 1,066

lusearch
#call-graph-edges 39,456 39,304 39,381 39,362 44,007
#reachable-methods 8,354 8,343 8,344 8,344 8,551
#polymorphic-calls 1,086 1,078 1,078 1,075 1,243

antlr
#call-graph-edges 55,467 55,396 55,474 55,455 59,818
#reachable-methods 8,721 8,711 8,714 8,714 8,885
#polymorphic-calls 1,722 1,709 1,709 1,716 1,876

pmd
#call-graph-edges 42,980 42,909 43,015 42,998 47,889
#reachable-methods 9,095 9,085 9,090 9,090 9,296
#polymorphic-calls 951 943 947 946 1,117

T
es
ti
n
g
pr
og

ra
m
s

eclipse
#call-graph-edges 44,947 44,842 44,926 44,824 51,724
#reachable-methods 9,204 9,194 9,197 9,188 9,444
#polymorphic-calls 1,184 1,175 1,181 1,179 1,399

xalan
#call-graph-edges 50,061 49,985 50,065 50,051 55,644
#reachable-methods 10,338 10,331 10,336 10,336 10,539
#polymorphic-calls 1,637 1,630 1,633 1,628 1,858

chart
#call-graph-edges 58,933 58,912 58,993 59,035 80,500
#reachable-methods 12,500 12,495 12,510 12,510 16,020
#polymorphic-calls 1,609 1,605 1,616 1,614 2,698

fop
#call-graph-edges 59,663 59,440 61,975 61,923 71,741
#reachable-methods 13,777 13,763 14,376 14,373 15,108
#polymorphic-calls 1,962 2,063 2,063 2,047 2,522

bloat
#call-graph-edges 61,249 60,990 60,638 60,601 68,674
#reachable-methods 9,947 9,928 9,914 9,914 10,113
#polymorphic-calls 1,679 1,667 1,652 1,650 1,925

jython
#call-graph-edges 52,644 N/A N/A N/A 59,932
#reachable-methods 10,625 N/A N/A N/A 10,987
#polymorphic-calls 14,084 N/A N/A N/A 1,565

jpc
#call-graph-edges 95,837 95,098 95,371 95,209 110,493
#reachable-methods 18,634 18,581 18,655 18,631 19,854
#polymorphic-calls 5,053 4,989 4,999 4,963 5,646

checkstyle
#call-graph-edges 42,410 42,333 42,204 42,174 49,346
#reachable-methods 8,435 8,424 8,428 8,428 8,672
#polymorphic-calls 1,096 1,088 1,090 1,088 1,304
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ordinary 2-call-site-sensitive analysis [Jeon et al. 2018]. However, 1callH+SL reduced about 50% of
may-fail casts of 1callH+T for all programs.
Table 3 compares the precision of the analyses for three other call-graph construction related

clients used in previous works [Li et al. 2018a,b; Tan et al. 2017]. #call-graph-edges presents the
number of call-graph edges without contexts, #reachable-methods presents the number of reachable
methods, and #polymorphic-calls presents the number of call-sites that cannot be determined as
monomorphic calls. The results show that our simulated call-site sensitivity 1callH+S overall shows
better precision than the baseline object sensitivity 1callH+T. This difference between 1callH+S and
1callH+SL comes from the learning objective. 1callH+SL was not trained to optimize these metrics
from 1callH+S (the current implementation of our algorithm uses #may-fail-casts as the learning
objective). The learning objective, however, can be easily adapted for other clients.

5.2 Impact of Simulation and Learning

Next, we discuss the impact of our technical contributions, simulation and learning.

Simulation Accuracy. We first note that our technique enabled call-site sensitivity to accurately
simulate object sensitivity for real-world applications. For all benchmark programs except for jython,
we ran the baseline object-sensitive analysis (1objH+T) and the corresponding call-site sensitive
analysis (1callH+SL) and counted the number (A) of may-fail cast queries that both analyses can
prove and the number (B) of queries that 1objH+T can prove. The ratio A/B hints at how accurately
1callH+SL covers the baseline object sensitivity. The average ratio over the 11 programs was 0.98,
implying that Obj2Cfa can simulate object sensitivity almost completely.

Most of the remaining 2% of queries, whichObj2Cfamissed, were caused by imperfect simulation
rather than learning; when we calculated the ratio using simulation only (i.e., 1callH+S), the
ratio A′/B was still 0.98, where A′ denotes the number of may-fail casts that both 1callH+S and
1objH+T can prove. We found that this was because we used a coarse tunneling space, i.e., invocation
sites, and that using a more fine-grained tunneling space (e.g., pairs of invocation-sites and receiver
objects) would improve the simulation accuracy. We describe an example in Section 7.

Roles of Simulation and Learning. The results in Table 2 show that our simulation technique
plays a key role in improving the precision of call-site sensitivity. The column 1callH+S in Table 2
presents the performance of the call-site sensitive analysis obtained by simulating 1objH+T. For all
programs, 1callH+S shows a far better precision than 1objH+T.

Comparing the performance of 1callH+S and 1callH+SL reveals that the use of learning reduced
the overhead of 1callH+S significantly. As the simulation needs to run the baseline object sensitivity
(1objH+T), the simulated call-site-sensitive analysis (1callH+S) is inherently more expensive than
the baseline object sensitivity (1objH+T). For example, 1callH+S is unable to analyze the program
jython because the baseline object sensitivity (1objH+T) failed to analyze it. Thanks to our learning
technique, however, our call-site sensitivity (1callH+SL) removed the limitation. For example,
1callH+SL successfully analyzed jython within the time budget.
We checked that the result of learning is not overfitted to the shared library. In eclipse, for

example, 1callH+SL proved 17% (resp., 15%) more may-fail casts compared to 1objH+T in the
application (resp., library) code, which implies that learning is equally effective in both application
and library code. We also checked 1callH+SL is not overfitted to DaCapo benchmarks. In a non-
DaCapo benchmark checkstyle, for example, 1callH+SL proved 41% (resp., 19%) more may-fail casts
compared to 1objH+T in the application (resp., library) code.

Impact of Simulation-Guided Learning. Our simulation-guided learning (Section 4.2) was es-
sential for effectively capturing the precision of the simulated policy. To demonstrate this, we
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Table 4. Impact of our simulation-guided learning (numbers indicate #may-fail-casts)

luindex lusearch antlr pmd Total

1callH+SL 357 371 477 707 1,912
1callH+Tnew 565 580 735 929 2,809
Decision tree 519 533 659 895 2,606

conducted two experiments. We first replaced our algorithm by the existing unguided algorithm
for learning context tunneling [Jeon et al. 2018] and trained a policy using the same set of atomic
features in Table 1 and training programs. Table 4 shows that the existing algorithm ended up
with a much less precise policy. Over the four training programs, the context-tunneled call-site
sensitivity obtained using the existing learning algorithm [Jeon et al. 2018], denoted 1callH+Tnew in
Table 4, reported 2,809 may-fail casts while the number for 1callH+SL is much smaller (1,912). This
result shows that the use of simulation in our approach is critical.

Second, we replaced our algorithm by a simple supervised learning method. We generated labeled
data, which consists of feature vectors of invocation sites and labels indicating whether selected by
the simulated policy (Tsim) or not. We used the decision tree algorithm in Pedregosa et al. [2011] to
learn a policy. Again, the resulting analysis (denoted Decision tree in Table 4) was unsatisfactory
in precision; over the training programs, it reported 2,604 may-fail casts. This is mainly because
the labeled data does not have enough information; although the simulated policy labels which
invocations need context tunneling, it is unable to label which invocations are precision critical.

Impact of New Features.Another important factor for effective learning was the use of the features
in Table 1 that are specifically designed for call-site sensitivity (recall that we crafted those features
guided by the simulated policy Tsim). For example, the 1callH+Tnew analysis described above, which
differs from 1callH+T [Jeon et al. 2018] only in the use of the new set of features, is much more
precise than 1callH+T: 1callH+Tnew produces 970 fewer alarms than 1callH+T that is learned using
the same algorithm but with the different features designed by Jeon et al. [2018].
We note that our features in Table 1 are not appropriate for learning tunneling heuristics for

object sensitivity. This is because our features are designed to reproduce the results of the simulated
call-site sensitivity (Tsim) rather than object sensitivity. To clarify the impact of using a different set
of features, we used our features and the existing algorithm [Jeon et al. 2018] to learn a tunneling
heuristic for object sensitivity. The resulting analysis, denoted 1objH+Tnew , was overall less precise
than 1objH+T.

Learning Cost. The learning phase of Obj2Cfa spent 58 hours in total, which is slightly faster
than the prior algorithm [Jeon et al. 2018]. Although our algorithm is expensive, we believe it is
acceptable because learning is done off-line and saves otherwise more expensive human effort.

5.3 Comparison with Selective Object Sensitivity

We also checked how 1callH+SL works in comparison with Zipper [Li et al. 2018a, 2020], a state-
of-the-art technique that performs selective 2-object sensitivity. Unlike the analyses considered
in Section 5.1, which perform uniform k-context sensitivity, Zipper performs a selective context-
sensitive analysis and applies 2-object sensitivity only when it is necessary. In particular, compared
to other selective approaches [Jeon et al. 2020; Jeong et al. 2017; Li et al. 2018b; Smaragdakis et al.
2014], Zipper is precision-focused and improves the scalability of uniform 2-object sensitivity while
preserving most (98.8%) of its precision.
For direct comparison, we implemented 1callH+SL and 1objH+T on top of the artifact provided

by Li et al. [2018a]. We used 14 programs (batik, fop, sunflow, bloat, xalan, chart, findbugs, eclipse,
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Table 5. Performance comparison of 1callH+SL, 2objH+Zip (i.e., Zipper [Li et al. 2018a]), and 1callH+SL+Zip.

Program Analysis #fail-casts Time Program Analysis #fail-casts Time

eclipse
1callH+SL 460 62

fop
1callH+SL 1,359 368

1callH+SL+Zip 482 42 1callH+SL+Zip 1,397 279
2objH+Zip 586 45 2objH+Zip 1,471 318

bloat
1callH+SL 1,136 456

jpc
1callH+SL 1,279 201

1callH+SL+Zip 1,168 397 1callH+SL+Zip 1,368 176
2objH+Zip 1,224 1,942 2objH+Zip 1,415 147

chart
1callH+SL 810 80

xalan
1callH+SL 463 91

1callH+SL+Zip 890 58 1callH+SL+Zip 482 72
2objH+Zip 910 54 2objH+Zip 568 66

sunflow
1callH+SL 1,787 438

findbugs
1callH+SL 1,316 288

1callH+SL+Zip 1,818 279 1callH+SL+Zip 1,360 164
2objH+Zip 1,869 361 2objH+Zip 1,437 604

checkstyle
1callH+SL 522 106

batik
1callH+SL 1,602 1,422

1callH+SL+Zip 535 88 1callH+SL+Zip 1,782 1,649
2objH+Zip 607 248 2objH+Zip 1,614 667

sunflow09
1callH+SL 1,101 126

xalan09
1callH+SL 989 241

1callH+SL+Zip 1,146 84 1callH+SL+Zip 1,004 166
2objH+Zip 1,192 73 2objH+Zip 1,074 214

avrora09
1callH+SL 918 147

h2
1callH+SL 1,207 3,766

1callH+SL+Zip 964 105 1callH+SL+Zip 1,225 2,318
2objH+Zip 1,042 115 2objH+Zip 1,311 8,216

jpc, checkstyle, h2, xalan09, avrora09, sunflow09) used in Li et al. [2018a]. Five programs (fop, xalan,
bloat, chart, eclipse) are DaCapo 2006 benchmarks [Blackburn et al. 2006], four programs (xalan09,
sunflow09, avrora09, and h2) are from DaCapo 2009 benchmarks, and the remaining five programs
(sunflow, findbugs, jpc, checkstle, batik) are real-world Java applications. Note that the artifact of Li
et al. [2018a] uses a quite different reflection analysis from the one we used in Table 2. The number
of alarms and analysis time varies significantly depending on how reflection is supported. The
baseline analysis on top of Zipper is implemented supports reflection less conservatively than our
implementation in Section 5.1 and therefore Table 5 reports fewer alarms than Table 2. In Table 5,
our analysis uses the same reflection analysis as Zipper.
Table 5 compares the performance of 1callH+SL and Zipper (denoted 2objH+Zip in Table 5). For

all programs, 1callH+SL shows a better precision than Zipper. Especially for bloat, 1callH+SL is
more precise and scalable than than 2objH+Zip; 2objH+Zip took 1,942 seconds and reports 1,224
alarms but 1callH+SL analyzed it within 456 seconds with 1,136 may-fail cast alarms. However, for
batik, 1callH+SL was slower than 2objH+Zip.
Because context tunneling and selective context sensitivity are orthogonal techniques, we can

combine our analysis (1callH+SL) and Zipper, resulting in a selective 1-call-site-sensitive analysis
with context tunneling (1callH+SL+Zip). This is possible because the idea of Zipper is general
and applicable to various context-sensitivity flavors including call-site sensitivity [Li et al. 2020].
Table 5 shows the performance of 1callH+SL+Zip. Thanks to Zipper, 1callH+SL+Zip becomes faster
than 1callH+SL at the small cost of the precision. In h2, for example, 1callH+SL+Zip took 2,318
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Table 6. Precision and scalability comparison between 1-hybrid-object sensitivity with tunneling (S1objH+T)

against its simulated call-site sensitivity (1callH+S’) and the call-site sensitivity obtained from learning

(1callH+SL’). The columns Time(s) of 1callH+S’ present sum of its baseline analysis cost(s) (e.g., S1objH+T) and

the simulated call-site sensitive analysis cost(s).

Program Analysis #fail-casts Times(s) Program Analysis #fail-casts Time(s)

luindex
1callH+SL’ 366 36

lusearch
1callH+SL’ 380 35

1callH+S’ 359 67 1callH+S’ 373 69
S1objH+T 371 32 S1objH+T 380 33

antlr
1callH+SL’ 486 54

eclipse
1callH+SL’ 586 40

1callH+S’ 479 95 1callH+S’ 573 77
S1objH+T 483 48 S1objH+T 586 36

xalan
1callH+SL’ 576 68

chart
1callH+SL’ 942 67

1callH+S’ 562 123 1callH+S’ 861 139
S1objH+T 572 59 S1objH+T 876 62

bloat
1callH+SL’ 1,267 456

jython
1callH+SL’ 856 194

1callH+S’ 1,248 870 1callH+S’ 836 8,985
S1objH+T 1,251 375 S1objH+T 837 342

jpc
1callH+SL’ 1,676 131

pmd
1callH+SL’ 721 59

1callH+S’ 1,644 3,002 1callH+S’ 710 50
S1objH+T 1,593 186 S1objH+T 713 52

fop
1callH+SL’ 1,084 123

checkstyle
1callH+SL’ 466 63

1callH+S’ 1,055 959 1callH+S’ 468 135
S1objH+T 1,080 94 S1objH+T 474 69

seconds while 1callH+SL took 3,766 seconds. One exception is batik, where 1callH+SL+Zip is slower
than 1callH+SL. This is because 1callH+SL+Zip in this case loses precision significantly (reporting
180 more alarms than 1callH+SL), producing spurious points-to sets that make the analysis slow.

5.4 Applicability to Variations of Object Sensitivity

In this paper, we focused on the original object sensitivity [Milanova et al. 2002] as it is the most
widely known and used (e.g., [Feng et al. 2014; Gordon et al. 2015; Li et al. 2018a,a,b; Lu and Xue
2019; Smaragdakis et al. 2014; Tan et al. 2016]). Therefore, though we believe our claim holds for
variations of object sensitivity as well (e.g., hybrid context sensitivity [Kastrinis and Smaragdakis
2013], type sensitivity [Smaragdakis et al. 2011]), we do not claim that Obj2Cfa in its present form
is readily applicable to them. Note that we have designed Obj2Cfa by exploiting the properties of
original object sensitivity (e.g., call-graph patterns and atomic features). To apply Obj2Cfa to its
variations, we may need domain-specific tuning of the simulation and learning techniques (e.g.,
the inference rules in Section 4.1 and feature engineering in Section 4.2). It would be interesting
future work to generalize our results for other variants of object sensitivity.
When we simply used Obj2Cfa to hybrid object sensitivity (in the setting of Section 5.1), for

example, we found that the results are encouraging yet suboptimal. Hybrid context sensitivity [Kas-
trinis and Smaragdakis 2013] is a variant of object sensitivity that selectively combines call-site
and object sensitivity, and the state-of-the-art is the context-tunneled version, S1objH+T [Jeon et al.
2018]. We applied Obj2Cfa to S1objH+T and transformed it into a call-site-sensitive analysis. We
compared the performance of S1objH+T with the simulated call-site sensitivity without learning
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(denoted 1callH+S’), and the final analysis with learning (denoted 1callH+SL’). Table 6 shows that,
though suboptimal, our simulation technique overall makes hybrid context sensitivity more precise
(1callH+S’ vs. S1objH+T), indicating that hybrid context sensitivity can benefit from our approach.
However, the learned analysis (1callH+SL’) shows overall worse precision than hybrid context
sensitivity. The failure of learning comes from the lack of atomic features appropriate for hybrid
object sensitivity. We leave adaptation to hybrid object sensitivity as future work.

6 RELATED WORK

Context Tunneling. Our work builds on the prior work by Jeon et al. [2018], where the ideas
of context tunneling and learning tunneling policies were first proposed. However, our main
message (call-site sensitivity can be superior to object sensitivity) as well as the simulation and
simulation-guided learning techniques are entirely original in this work.

Object Sensitivity.Our work deviates significantly from past works on improving context-sensitive
analyses for object-oriented programs. While almost all past works took the łsafež direction of
building upon object sensitivity [Jeong et al. 2017; Li et al. 2018a,b; Liang and Naik 2011; Liang
et al. 2011; Lu and Xue 2019; Smaragdakis et al. 2011, 2014; Sridharan et al. 2012; Tan et al. 2016],
our work calls for attention to call-site sensitivity.

Over the past decades, a large amount of research has been devoted to improving object sensitivity.
For example, Smaragdakis et al. [2011] proposed a variant of object sensitivity, called type sensitivity,
which is more scalable than object sensitivity with little compromise on precision. Sridharan et al.
[2012] proposed parameter sensitivity that uses parameter values as contexts rather than the values
of receiver objects. Tan et al. [2016] presented a technique to make k-object-sensitive analyses
more precise without increasing k . Thiessen and Lhoták [2017] proposed a new variation of object
sensitivity that combines CFL-reachability andk-limited approach. Xu and Rountev [2008] improved
scalability of object sensitivity by identifying and merging equivalent contexts.
Selective object sensitivity has been particularly popular for boosting object sensitivity [Jeong

et al. 2017; Li et al. 2018a,b; Liang and Naik 2011; Liang et al. 2011; Lu and Xue 2019; Smaragdakis
et al. 2014; Wei and Ryder 2015]. As applying deep object sensitivity to all methods does not
scale to large programs, several techniques have been proposed to apply deeper contexts only
to a set of methods that are likely to benefit. For example, Smaragdakis et al. [2014] proposed
a technique that runs a pre-analysis and identifies the methods that should not receive context
sensitivity. Jeong et al. [2017] developed a machine learning algorithm that can produce method-
selection heuristics automatically and showed that the data-driven approach outperforms existing
hand-crafted approaches. As we showed in Section 5.3, selective context sensitivity is effective at
improving the scalability of call-site sensitivity as well [Li et al. 2020; Oh et al. 2014; Smaragdakis
et al. 2014], which would make our technique more practical.

Call-Site Sensitivity. Call-site sensitivity has received little attention in static analysis of object-
oriented languages. However, call-site sensitivity has been studied extensively in other con-
texts [Dan et al. 2017; Khedker and Karkare 2008; Khedker et al. 2012; Oh et al. 2014; Sridharan and
Bodík 2006; Sridharan et al. 2005; Thakur and Nandivada 2019; Tripp et al. 2009; Zhang et al. 2014].
For example, several works developed techniques to run the most precise, ∞-call-site-sensitive
analysis. Khedker and Karkare [2008] used value contexts to identify redundant contexts that are
worthless to maintain and remove them to scale up the full call strings analysis without precision
loss. In a similar context, Thakur and Nandivada [2019] proposed a way to handle the scalability
issue by reducing comparison costs involved in value contexts. Another line of works aimed to
improve scalability of call-site sensitivity [Dan et al. 2017; Sridharan and Bodík 2006; Sridharan
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et al. 2005; Whaley and Lam 2004; Xu et al. 2009]. For example, Whaley and Lam [2004] used
binary decision diagrams to represent context strings efficiently, and Sridharan and Bodík [2006]
proposed a refinement-based demand-driven analysis based on CFL-reachability, where the idea
is to remove client-irrelevant part of the program. It is challenging to compare ours with the
demand-driven approaches [Späth et al. 2016; Sridharan and Bodík 2006] because our technique is
currently formulated on top of a whole-program analysis and does not consider the CFL-reachability
formulation.

Data-Driven Static Analysis. Learning analysis policies has been popular in recent works [Bielik
et al. 2017; Grigore and Yang 2016; He et al. 2020; Heo et al. 2019, 2017; Jeon et al. 2019, 2020; Jeong
et al. 2017; Oh et al. 2015; Peleg et al. 2016; Singh et al. 2018; Wei and Ryder 2015]. At a high-level,
our work is in this line of research, but we apply learning to a new application, i.e., transforming
object sensitivity to call-site sensitivity. To do so, we adapt the existing ideas [Jeon et al. 2018;
Jeong et al. 2017] to learn the behavior of the simulated policy. Technically, the main difference is
that ours is a supervised learning algorithm (in that the search process is guided by the simulated
policy) while the existing algorithms [Jeon et al. 2018; Jeong et al. 2017] are unsupervised.

7 OPEN QUESTION: IS COMPLETE SIMULATION POSSIBLE?

In this paper, we showed that it is practically possible to outperform object sensitivity via context-
tunneled call-site sensitivity. However, it remains to be seen whether or not call-site sensitivity can
be fundamentally superior to object sensitivity. Let us define the notion of ‘superiority’ as follows:

Definition 7.1 (Superiority of Call-Site Sensitivity). Let P be a set of target programs. Let S be a
context-tunneling space for the target programs. We say call-site sensitivity is superior to object
sensitivity with respect to S if is always possible to simulate object sensitivity via call-site sensitivity:

∀P ∈ P.∀Tobj ∈ S.∃Tcall ∈ S.∀k ∈ [0,∞]. fixF
Tcall,Ucall

P,k
⪰ (more precise than) fixF

Tobj,Uobj

P,k
(5)

whereUcall and Uobj are context-update functions (Eq. (1) and (2)) that are naturally given together
with the tunneling space S, and the precision order ⪰ is defined in terms of the context-insensitive
points-to sets, as follows:

fixFT ,U
P,k
⪰ fixFT

′
,U ′

P,k
⇐⇒ ∀x ∈ VarP . Π(fixF

T ,U
P,k

) (x ) ⊆ Π(fixFT
′
,U ′

P,k
) (x )

where Π(X ,Y ,R,G ) = λx .
⊔

ctx∈Ctx{h | (h, hctx) ∈ X (x , ctx)}.

Then, the question is restated as follows: Is there a context-tunneling space S that makes the
condition (5) true?

Object Sensitivity is Not Fundamentally Superior.We first show that object sensitivity is not
fundamentally superior to call-site sensitivity. That is, it is not possible to find a tunneling abstraction
space S that makes k-object sensitivity with tunneling always equal or more precise than k-call-site
sensitivity with tunneling. The example code in Figure 1a is a universal counter-example for all
tunneling spaces S. By definition of context tunneling (i.e., selective update of contexts), the method
id in the example (Figure 1a) can have [D] (updating context) or [·] (inheriting context) as a context
no matter what tunneling abstraction space is used. Thus, k-object sensitivity with tunneling is
unable to separate the three method calls (invoked at the three different invocation sites) with the
two available context choices. In summary, we conclude that object sensitivity cannot simulate
call-site sensitivity even in the generalized setting with context tunneling.

The Case for Call-Site Sensitivity. On the other hand, the situation for call-site sensitivity is
nontrivial and it remains to be seen whether or not call-site sensitivity can simulate object sensitivity
completely. Let us explain in more detail with examples.
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1 class C {

2 C f;

3 void m(C v) {

4 this.set(v);

5 v.set(this);

6 }

7 void set(C v) {

8 this.f = v;

9 }

10 }

11 void main() {

12 C c1 = new C();//C1

13 C c2 = new C();//C2

14

15 c1.m(c2);

16 c2.m(c1);

17 assert(c1.f != c2.f);

18 }

(a) Example code

main

[·]

m

[C1]

m

[C2]

set

[C1]

set

[C2]

15

16

4

4

5
5

(b) Call-graph by 1-object sensitivity

main

[·]

m

[15]

m

[16]

set

[4]

set

[5]

15

16

4

5

5

4

(c) Call-graph by 1-call-site sensitivity

Fig. 7. Example such that call-site sensitivity cannot simulate object sensitivity w.r.t. tunneling space S = Invo.

First, we point out that that the condition (5) does not hold w.r.t. the tunneling space considered
in this paper. In Section 3, we defined the tunneling space S to be the set of invocation-sites, i.e.,
S = Invo. With this space, there exists a tricky counter-example program that context-tunneled
call-site sensitivity is unable to simulate object sensitivity. Consider the program in Figure 7. In
the example code, class C contains two methods, set and m. Method set is a setter that stores the
parameter value in the the field of the base object, and method m calls the set method twice with
the receiver object and parameter being swapped. The main method creates two objects, C1 and C2,
and stores them in c1 and c2. Method m is called on c1 with parameter c2 at line 15, and it is called
again on c2 with parameter c1 at line 16. At line 17, an assertion asks if the fields of c1 and c2 are
not aliased. In the real execution, the query holds because c1.f points to C2 and c2.f points to C1.

The conventional 1-object-sensitive analysis can prove the query but 1-call-site sensitivity cannot
do so no matter what tunneling abstraction from the space S = Invo is chosen. Figure 7b presents
the call-graph of 1-object sensitivity. The object-sensitive analysis is effectively producing the
call-graph above as each context of set determines the value of each parameter. When the context
is [C1], the receiver object is C1 and the value of the parameter is C2. Otherwise, when the context
is [C2], the receiver object and the parameter value are C2 and C1, respectively. On the other hand,
conventional 1-call-site sensitivity constructs a similar but different call-graph in Figure 7c. Note
that the two edges labeled 4 go to the same method but they are heading to different methods in
the call-graph of object sensitivity. Thus, it is not possible to simulate object sensitivity with the
invocation-site-based context tunneling.
However, this counter-example does not mean that it is fundamentally impossible to simulate

object sensitivity via call-site sensitivity, as the counter-example becomes no longer valid if we use a
more fine-grained tunneling abstraction. For example, suppose we define the tunneling space to be
pairs of receiver objects and invocation-sites, i.e., S = Heap × Invo (recall that choosing a tunneling
abstraction does not affect the analysis soundness). With this tunneling space, a context-tunneled
1-call-site-sensitive analysis can now prove the query. Suppose we use a tunneling abstraction
T = {(C1, 4), (C1, 5)}, which means that we apply context tunneling only when the receiver object
isC1 and the invocation-site is either 4 or 5. 1-call-site sensitivity withT produces the call-graph in

Figure 8. In the call-graph, m[15]
(C1,4)
→ set[15] indicates that the caller (m) and callee (set) have

the same context 15 where the callee method is called at invocation-site 4 and its receiver object is
C1. With this call-graph, we can prove the query in Figure 7a as it is strictly more precise than the
call-graph produced by object sensitivity (Figure 7b).
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main

[·]
m

[15]
m

[16]
set

[5]
set

[4]

set

[15]
set

[16] (C1, 15)(C2, 16)
(C1, 4)(C1, 5)

(C2, 4) (C2, 5)

Fig. 8. Call-graph with a fine-grained tunneling space

This way, we conjecture that it would be always possible to find a suitable context-tunneling
space S that satisfies the condition (5) w.r.t. the given set of programs (P). We leave an in-depth
theoretical analysis as future work.

8 CONCLUSION AND FUTURE WORK

Unfortunately, the program analysis community for object-oriented programs has dismissed call-
site sensitivity for a long time. In this paper, showed that call-site sensitivity has vast untapped
potential, even more than object sensitivity, when the notion of k-limiting is generalized. We
provided an insight that call-site sensitivity with context tunneling can simulate object sensitivity
and experimentally proved that the observation holds in practice by developing a technique to
transform a baseline object-sensitive analysis intomore precise, context-tunneled call-site sensitivity.
Based on our results, we hope that the community reconsiders call-site sensitivity from now on.
Many problems remain as future work. We already discussed a theoretical issue in Section 7.

Other problems include the following.

• Can we learn better tunneling strategies than just simulating object sensitivity? Our goal in this
paper was to show that call-site sensitivity can be superior to object sensitivity, and simulating
object sensitivity was an effective means of achieving this goal. However, simulating object
sensitivity would be a suboptimal strategy for call-site sensitivity; we believe an optimal
tunneling strategy would enable call-site sensitivity to show far better precision than ours
(1callH+SL). Thus, an interesting direction for future work is to develop a powerful learning
algorithm to find such strategies, where the main challenge is how to efficiently explore the
huge and non-monotone tunneling space [Jeon et al. 2018]. Using reinforcement learning,
for example, could be a promising approach to address this challenge.
• Can our approach be adapted for other flavors of context-sensitive analyses? Our current
simulation technique relies on properties specific to k-CFA (e.g., I2 in Section 4.1 leverages a
unique property of context-tunneled k-CFA). However, the high-level idea (i.e., simulating
object sensitivity) would be applicable to other analyses. For example, it would be interesting
if our idea could be adapted form-CFA [Might et al. 2010].
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