
PAFL: Enhancing Fault Localizers by Leveraging
Project-Specific Fault Patterns
DONGUK KIM, Korea University, Republic of Korea
MINSEOK JEON, Korea University, Republic of Korea
DOHA HWANG, Samsung Electronics, Republic of Korea
HAKJOO OH, Korea University, Republic of Korea

We present PAFL, a new technique for enhancing existing fault localization methods by leveraging project-
specific fault patterns.We observed that each software project has its own challenges and suffers from recurring
fault patterns associated with those challenges. However, existing fault localization techniques use a universal
localization strategy without considering those repetitive faults. To address this limitation, our technique,
called project-aware fault localization (PAFL), enables existing fault localizers to leverage project-specific fault
patterns. Given a buggy version of a project and a baseline fault localizer, PAFL first mines the fault patterns
from past buggy versions of the project. Then, it uses the mined fault patterns to update the suspiciousness
scores of statements computed by the baseline fault localizer. To this end, we use two novel ideas. First, we
design a domain-specific fault pattern-description language to represent various fault patterns. An instance,
called crossword, in our language describes a project-specific fault pattern and how it affects the suspiciousness
scores of statements. Second, we develop an algorithm that synthesizes crosswords (i.e., fault patterns) from
past buggy versions of the project. Evaluation using seven baseline fault localizers and 12 real-world C/C++
and Python projects demonstrates that PAFL effectively, robustly, and efficiently improves the performance of
the baseline fault localization techniques.

CCS Concepts: • Software and its engineering → Software testing and debugging; Domain specific
languages.

Additional Key Words and Phrases: Fault Localization, Domain-Specific Language, Program Synthesis

ACM Reference Format:
Donguk Kim, Minseok Jeon, Doha Hwang, and Hakjoo Oh. 2025. PAFL: Enhancing Fault Localizers by
Leveraging Project-Specific Fault Patterns. Proc. ACM Program. Lang. 9, OOPSLA1, Article 129 (April 2025),
28 pages. https://doi.org/10.1145/3720526

1 Introduction
Fault localization is a crucial software engineering technique that aims to automatically identify the
root causes of faults in programs. Over the past decades, various fault localization techniques have
been proposed, including spectrum-based (SBFL) [Abreu et al. 2006; Jones et al. 2002], mutation-
based (MBFL) [Moon et al. 2014; Papadakis and Le Traon 2015], deep learning-based (DLFL) [Li
et al. 2019; Lou et al. 2021], and LLM-based [Yang et al. 2024] fault localization techniques. These
methods can significantly reduce the burden on developers and serve as a key ingredient in other
software engineering techniques, such as automatic program repair [Gazzola et al. 2019; Liu et al.

Authors’ Contact Information: Donguk Kim, Korea University, Seoul, Republic of Korea, donguk_kim@korea.ac.kr; Minseok
Jeon, Korea University, Seoul, Republic of Korea, minseok_jeon@korea.ac.kr; Doha Hwang, Samsung Electronics, Suwon,
Republic of Korea, doha.hwang@samsung.com; Hakjoo Oh, Korea University, Seoul, Republic of Korea, hakjoo_oh@korea.
ac.kr.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/4-ART129
https://doi.org/10.1145/3720526

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 129. Publication date: April 2025.

HTTPS://ORCID.ORG/0009-0009-7531-3654
HTTPS://ORCID.ORG/0000-0001-8320-8509
HTTPS://ORCID.ORG/0009-0005-1540-5486
HTTPS://ORCID.ORG/0000-0002-1900-7654
https://doi.org/10.1145/3720526
https://orcid.org/0009-0009-7531-3654
https://orcid.org/0000-0001-8320-8509
https://orcid.org/0000-0001-8320-8509
https://orcid.org/0009-0005-1540-5486
https://orcid.org/0000-0002-1900-7654
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3720526
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3720526&domain=pdf&date_stamp=2025-04-09

129:2 Donguk Kim, Minseok Jeon, Doha Hwang, and Hakjoo Oh

70%

15%
15%

Incorrect validation of input metadata
Invalid memory access

Otherwise

(a) Fault types in exiv2

73%

13%
14%

Incorrect token pattern matching
Missing a conor case

Otherwise

(b) Fault types in cppcheck

Fig. 1. Distribution of faults in exiv2 and cppcheck.

2019; Xia and Zhang 2022; Ye and Monperrus 2024]. In this paper, we propose a novel approach to
fault localization, called project-aware fault localization (PAFL).

Motivation. Our motivation is that a software project has its own difficulties and suffers from
recurring faults associated with those project-specific difficulties. For example, Fig. 1 shows the
distribution of fault patterns in two real-world projects. The exiv2 project is a C++ library for
reading, writing, and modifying image metadata, while cppcheck is a static analyzer for C/C++
programs. The exiv2 project has a unique challenge of validating input metadata due to numerous
variations of image metadata. Consequently, 70% of its faults are related to incorrect validation of
input metadata. The cppcheck project, on the other hand, suffers from incorrect pattern matching
for input tokens as the C++ language has various syntactic features [Padioleau 2009], accounting
for 73% of the total faults.
This observation motivates our project-aware fault localization approach. Our hypothesis is as

follows:
Leveraging project-specific fault patterns appeared in past versions would be beneficial for
localizing faults in the future versions of the project.

For instance, when localizing faults in the exiv2 project, statements related to validating input
metadata could be considered more suspicious than others. In contrast, in the cppcheck project,
statements related to token pattern matching could be considered more suspicious.

Existing Approaches. To our knowledge, no existing fault localization techniques take project-
specific fault patterns into account. Instead, existing techniques are designed with the assumption
that faults are uniformly distributed across all projects. For example, spectrum-based fault local-
ization techniques (SBFL) rely on pre-fixed formulas regardless of the given project [Abreu et al.
2006; Jones et al. 2002; Xie et al. 2013]. Existing machine learning-based approaches [B. Le et al.
2016; Lou et al. 2021; Meng et al. 2022; Sohn and Yoo 2017; Yang et al. 2020] also aim to learn a
universal, project-unaware model; the model trained on one project is used for localizing faults in
other projects.

Project-Aware Fault Localization. To address this limitation, PAFL enables existing fault localizers
to leverage project-specific fault patterns. PAFL is a post-processing technique that treats baseline
fault localizers as black-boxes and enhances them by updating their suspiciousness scores. Thus,
PAFL is generally applicable to a wide range of baseline fault localizers, e.g., SBFL and DLFL.
PAFL is based on two key ideas. First, we design a domain-specific fault pattern-description

language. An instance in our language, called crossword, describes a fault statement pattern and
how the suspiciousness of a statement described by the crossword will be updated. If a statement is
described by a crossword (i.e., the statement has the fault pattern), PAFL increases the suspiciousness
of the statement. Second, we develop an algorithm that synthesizes project-specific crosswords

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 129. Publication date: April 2025.

PAFL: Enhancing Fault Localizers by Leveraging Project-Specific Fault Patterns 129:3

...

uint32_t resrcLength = getULong(buf, bigEndian);

+ enforce(resrcLength < io_->size(), ...);

while (resrcLength > 0)

...

(a) Fault and corresponding fix in exiv2#1.

...

subBox.length = getLong(...);

subBox.type = getLong(..., bigEndian);

- if (subBox.length > io_->size() - io_->tell()){

+ if (subBox.length < sizeof(box) || ...) {

throw Error(kerCorruptedMetadata);}

(b) Fault and corresponding fix in exiv2#5.

Fig. 2. Faults appeared in two different versions of exiv2 project.

from past buggy versions of the target project. The algorithm is specifically designed to efficiently
synthesize high-quality crosswords from past buggy versions that can effectively improve the
suspiciousness ranking of the fault statements in past versions.
We evaluated PAFL on seven representative baseline fault localization techniques (three SBFL,

three DLFL, and one LLM-based FL) using 12 real-world C/C++ and Python projects with 224 bugs.
The results show that PAFL effectively, robustly, and efficiently improves the performance of the
baseline fault localizers. For example, PAFL enabled three baseline SBFL techniques, Ochiai [Abreu
et al. 2006],DStar [Wong et al. 2012], and Barinel [Abreu et al. 2009], to rank 100%, 62.5%, and 160%
more fault statements at the top-1 position (i.e., accurately ranked the fault statements as the most
suspicious ones), respectively. PAFL also robustly improved the baselines; applying PAFL showed
equal or better performance than the six baseline fault localizers for 93% of the 224 bugs. The
overhead (i.e., training and score updating cost) of PAFL was negligible: the maximum overhead
was less than one minute for all the versions of the projects.

Contributions. Our contributions are as follows:
• We present a novel technique, project-aware fault localization, that enables existing fault
localization techniques to leverage project-specific fault patterns.
• We design a domain-specific language to describe fault patterns and an algorithm synthesizing
project-specific fault patterns (i.e., crosswords) from past versions.
• We experimentally demonstrate that PAFL effectively, robustly, and efficiently improves the
performance of various baseline fault localization techniques.

High-Level Idea of PAFL. The high-level idea of PAFL is to use suspicious tokens (e.g., variable
name) to improve fault localization. Our observations also revealed that fault statements within a
project are syntactically similar across different versions, allowing project-specific fault patterns to
be described using suspicious tokens. PAFL mines these fault patterns (represented as crosswords)
from past buggy versions and uses them to enhance fault localization in the latest version. The
following section provides an overview of how PAFL leverages these suspicious tokens to improve
fault localization.

2 Overview
In this section, we roughly illustrate our approach. We first introduce faults redundantly occurred in
the two real-world projects exiv2 and cppcheck, which motivates our project-aware fault localization
approach. Then, we describe how our technique PAFL works.

Motivating Examples. Fig. 2 shows faults and corresponding fixes in two different versions of the
exiv2 project, a library and command-line utility to read, write, delete, and modify image metadata.
The exiv2 project includes complicated logic for processing input image metadata; hence, related

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 129. Publication date: April 2025.

129:4 Donguk Kim, Minseok Jeon, Doha Hwang, and Hakjoo Oh

bool isTemporary(bool cpp, const Token* tok,...){

...

if (Token::Match(tok->previous(), ...)){

...}

+ if (tok->isCast())

+ return false;

+ // Currying a function is unknown ...

+ if (Token::simpleMatch(tok, "(") && ...

+ return unknown;

return true;}

(a) Fault and corresponding fix in cppcheck#10.

static bool isDeadTemporary(bool cpp, ...){

if (!isTemporary(cpp, tok, library))

return false;

- if (expr && !precedes(...))

- return false;

+ if (expr) {

+ if (!precedes(...))

+ return false;

+ const Token* parent = tok->astParent();

+ // Is in a for loop

+ if (astIsRHS(tok) && ...) {

+ const Token* braces = ...

+ if (precedes(braces, expr) && ...

+ return false;}}

return true;}

(b) Fault and corresponding fix in cppcheck#18.

Fig. 3. Faults appeared in two different versions of cppcheck project.

faults have repeatedly occurred. For example, in the earlier version exiv2#1 in Fig. 2a, the original
code missed a logic for processing the size of the input. A few versions later, exiv2#5 in Fig. 2b, the
developer made a similar mistake in processing the size of the metadata. Such faults have frequently
occurred during the development of the project, with 70% of the faults in exiv2 being related to
processing input metadata.

Fig. 3 shows the recurring faults and repairs in another software project, cppcheck, a static analysis
tool for C/C++ code. The C++ language has numerous features; developing a comprehensive
parser has been a significant challenge [Padioleau 2009]. It also has been a key challenge in the
cppcheck project. For example, in the earlier version cppcheck#10 in Fig. 3a, the original code missed
some conditions related to the variable ‘tok’, which is responsible for parsing the tokens in a given
C++ code. A few versions later, in cppcheck#18 in Fig. 3b, a similar fault occurred again. The original
code also missed some conditions related to the variable ‘tok’. In the cppcheck project, 70% of the
faults are related to parsing the tokens of input C++ code. We would like to note that the above
challenges and fault patterns are project-specific. Other projects have different challenges and fault
patterns. PAFL aims to leverage these project-specific fault patterns to improve fault localization.

Overview of PAFL. Fig. 4 shows the overall process of PAFL. Given a buggy project, PAFL first
represents the program code as an aggregated AST, where each node in the tree represents a
statement in the program (the details of aggregated AST are described in the next paragraph). Then,
PAFL applies a baseline fault localization technique (e.g., Ochiai [Abreu et al. 2006]) to get the
initial suspiciousness score of each node (i.e., statement). After the initial suspiciousness scores are
obtained, PAFL synthesizes fault patterns, namely crosswords, from the past buggy versions of the
project. Intuitively, crosswords describe fault node patterns when a program is represented as an
aggregated AST. Then, PAFL uses the mined crosswords to update the suspiciousness scores of the
nodes. In the updating procedure, suspiciousness scores of nodes (i.e., statements) increase if they
are described by the synthesized crosswords.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 129. Publication date: April 2025.

PAFL: Enhancing Fault Localizers by Leveraging Project-Specific Fault Patterns 129:5

Buggy project

Database
(past versions of the project)

Crossword

… …

…

…

…

Aggregated AST Suspiciousness

Baseline FL

Updated suspiciousness

Fault pattern synthesis
(crossword synthesis)

Fig. 4. Overall workflow of PAFL.

...

⟨ ‘subBox’, ‘type’,
. . . , ‘bigEndian’⟩

⟨‘subBox’, ‘length’,
‘=’, ‘getLong’, . . . ⟩

⟨‘if’, ‘subBox’,
‘length’, ‘>’, . . . ⟩

⟨‘throw’, ‘Error’,
‘kerCorruptedMetadata’⟩

(a) Aggregated AST of exiv#5.

{‘>’: 0.27, . . . }{‘bigEndian’: 0.33,
. . . } {. . . }

{. . . }

{. . . }

(b) Synthesized and used crossword.

Fig. 5. Aggregated AST of exiv2#5 (Fig. 2b) and the crossword mined from the earlier version exiv2#1 (Fig. 2a).

Aggregated AST. An aggregated AST is an abstract version of the full abstract syntax tree (AST).
In an aggregated AST, each node represents a statement in the program, and the edges between
the nodes represent the relationships between the statements. For example, Fig. 5a shows the
aggregated AST of the buggy program exiv2#5 in Fig. 2b (i.e., the program before the fix). In

the tree, the node ⟨‘if’, ‘subBox’,
‘length’, ‘>’, . . . ⟩ represents the fault statement “if (subBox.length > ...){ ”

in Fig. 2b. There are two types of edges in the aggregated AST. Red-colored edges describe the
sequence relationships between the statements, and blue-colored edges describe the hierarchical
(e.g., branch) relationships between the statements. For example, the statements “subBox.length =

getLong(...);” and “subBox.type = getLong(..., bigEndian);” are sequentially connected in the
program; the two nodes ⟨‘subBox’, ‘length’,

‘=’, ‘getLong’, . . . ⟩ and ⟨ ‘subBox’, ‘type’,
. . . , ‘bigEndian’⟩ are connected by a red-colored edge.

The two nodes ⟨‘throw’, ‘Error’,
‘kerCorruptedMetadata’⟩ and ⟨‘if’, ‘subBox’,

‘length’,‘>’, . . . ⟩ are connected with a blue-colored
edge because the former is a branch statement of the latter.

Crossword. Fig. 5b shows the crossword mined from the past version (exiv2#1 in Fig. 2a). A
crossword is a graphwith five nodes describing suspicious code patterns. Intuitively, the central node
(gray-colored) and the adjacent nodes describe the patterns of fault statements and their adjacent
statements, respectively. For instance, the crossword in Fig. 5b describes that fault statements
usually include the token ‘>’ and previous statements of fault statements include the variable
‘bigEndian’. The centered node {‘>’: 0.27, . . . } increases the suspiciousness score by 0.27 if the
statement includes the ‘>’ token. The node {‘bigEndian’: 0.33, . . . } increases the suspiciousness by 0.33
if a previous statement includes the ‘bigEndian’ variable. For instance, the suspiciousness score

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 129. Publication date: April 2025.

129:6 Donguk Kim, Minseok Jeon, Doha Hwang, and Hakjoo Oh

1: int fun(int x) {//s1

2: int y = 100;//s2

3: y = x;//s3

4: if (x >= 100)//s4

5: return -y;//s5

6: return y;}//s6

(a) Program 𝑃

{(0, 0),

(1, 1),

(99, 99),

(100, 100),

(101, -101),

(200, -200)}

(b) Test suite

𝑠1

𝑠2 𝑠3 𝑠4

𝑠5

𝑠6

(c) Aggregated AST

{‘if’ : 0.3}{} {‘y’ : 0.13}

{‘x’ : 0.21}

{‘return’ : 0.2,
‘y’ : 0.1}

(d) Crossword

Fig. 6. Running Example

of the fault statement in Fig. 2b is increased by 0.6 as the statement “if (subBox.length > ...”

(described by the node ⟨‘if’, ‘subBox’,
‘length’, ‘>’, . . . ⟩ in Fig. 5a) includes the ‘>’ token and the previous statement

“subBox.type = getLong(..., bigEndian);” (⟨ ‘subBox’, ‘type’,
. . . , ‘bigEndian’⟩ in Fig. 5a) includes the ‘bigEndian’

variable. In our evaluation, the synthesized crossword significantly improved the suspiciousness
ranking of the fault statement in exiv2#5. The suspiciousness ranking of the fault statement in
Fig. 2b increased from 38 to 1 when Ochiai [Abreu et al. 2006] was used as the baseline fault
localization technique.
We would like to note that the crossword describes a project-specific fault pattern using the

‘bigEndian’ variable (i.e., token), which indicates the byte order of the header of the input metadata
in the exiv2 project. Applying the crossword to other projects may not be effective because the
‘bigEndian’ is not a common variable in other projects.

3 Project-Aware Fault Localization
In this section, we describe our technique, PAFL, in detail using Fig. 6 as a running example.

Running Example. Fig. 6a shows an example buggy program. Fig. 6b presents a test suite, a
collection of input-output values the program should satisfy. For instance, test (1, 1) indicates
that the program should return 1 when given input 1. The program does not satisfy the test case
(100, 100), as it returns −100 when it takes 100 as input. The fault lies in the token ‘>=’ in line 4,
which needs to be replaced with ‘>’.

3.1 Problem Definition

Program.We represent a program 𝑃 as a sequence of statements, where each statement is a pair
consisting of a label (i.e., line number) and a sequence of lexical tokens:

𝑃 ∈ Program = Stmt∗

𝑠 ∈ Stmt = Label × Token∗

t ∈ Token = Char∗

For example, the example program in Fig. 6a is represented by the sequence ⟨𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6⟩ with
𝑠1 = (1, ⟨int, fun, int, x⟩) 𝑠2 = (2, ⟨int, y,=, 100⟩) 𝑠3 = (3, ⟨y,=, x⟩)
𝑠4 = (4, ⟨if, x, >=, 100⟩) 𝑠5 = (5, ⟨return,−, y⟩) 𝑠6 = (6, ⟨return, y⟩)

Let tokens : 2Stmt → 2Token be the function that extracts tokens from a set of statements: tokens(𝑆) =⋃
(_,T) ∈𝑆 T .

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 129. Publication date: April 2025.

PAFL: Enhancing Fault Localizers by Leveraging Project-Specific Fault Patterns 129:7

We represent a program as an aggregated AST. For instance, Fig. 6c shows the tree representation
of the program in Fig. 6a. In this representation, we assume the following functions:

succ, pred, parent, child ∈ Program × 2Stmt → 2Stmt

which respectively retrieve the successors, predecessors, parents, and children of given statements,
e.g., succ(P, {s2}) = {s3}, pred (P, {s3}) = {s2}, parent (P, {s2}) = {s1}, child (P, {s1}) = {s2, s3, s4, s6}.

In the remainder of this section, when 𝑆 is a singleton set, i.e., 𝑆 = {𝑠}, we simplify the notation
for the functions tokens, succ, pred, parent, and child by omitting the braces. For example, we write
tokens(𝑠) instead of tokens({𝑠}).
Execution. Let J−K be the instrumented program execution:

J𝑃K : In→ Out × 2Stmt

where In and Out denote the program’s input and output domains, respectively. Note that J𝑃K
produces not only the output but also a set of statements executed by the input.

A test is a pair (i, o) ∈ In×Out of input and output values, and a test suite𝑇 ∈ TestSuite = 2In×Out

is a set of tests. Given a program 𝑃 , we can classify tests in 𝑇 into passing (𝑇 𝑃
pass) and failing (𝑇 𝑃

fail)
tests:

𝑇 = 𝑇 𝑃
pass ⊎𝑇 𝑃

fail

𝑇 𝑃
pass = {(i, o) ∈ 𝑇 | fst (J𝑃K(i)) = o}
𝑇 𝑃

fail = {(i, o) ∈ 𝑇 | fst (J𝑃K(i)) ≠ o}

We say a program 𝑃 is buggy w.r.t. a test suite 𝑇 iff 𝑇 𝑃
fail ≠ ∅. Let CovStmts(𝑃, i) be the statements

covered by J𝑃K(i):
CovStmts(𝑃, i) = snd (J𝑃K(i))

In this work, we use statement-level fault localization. In the statement-level fault localization,
faults represent statements that make the program fail test cases, and fixing the statements makes
the program pass the test cases. If the fix only adds new statements, the previous and after statements
of the added statements are considered fault statements [Pearson et al. 2017].

Baseline Fault Localizer. PAFL is designed to be used on top of a wide range of baseline fault
localizers. We assume that a baseline fault localizer fl of the following type is given:

fl ∈ FL = Program × TestSuite→ (Stmt → R).
Given a program 𝑃 and a test suite 𝑇 , fl(𝑃,𝑇) maps statements to their suspiciousness scores. For
example, Ochiai [Abreu et al. 2006] is defined as follows:

𝑂𝑐ℎ𝑖𝑎𝑖 (P,𝑇) = 𝜆𝑠 ∈ Stmt .
𝑁𝑓√︃

|𝑇 𝑃
fail | × (𝑁𝑓 + 𝑁𝑝)

where 𝑁𝑓 and 𝑁𝑝 denote the numbers of failing and passing tests that cover statement 𝑠:

𝑁𝑓 =
∑︁

(i,_) ∈𝑇𝑃
fail

1𝑠∈CovStmts (𝑃,i) , 𝑁𝑝 =
∑︁

(i,_) ∈𝑇𝑃
pass

1𝑠∈CovStmts (𝑃,i) .

Goal. PAFL uses a set V ⊆ Version of buggy program versions to transform a fault localizer into an
enhanced one:

𝑃𝐴𝐹𝐿 : FL × 2Version → FL.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 129. Publication date: April 2025.

129:8 Donguk Kim, Minseok Jeon, Doha Hwang, and Hakjoo Oh

A buggy program version is defined as a tuple of buggy program, test suite, and ground truth:
Version = Program × TestSuite × GroundTruth.

where GroundTruth = 2Stmt denotes the set of statements modified by developers to fix the bug.
For an unseen buggy program 𝑃 with test suite 𝑇 and the ground truth G where the past buggy

program versions are 𝑉 ⊆ Version, PAFL aims to rank the fault statements higher than the baseline
fault localizer fl:

FR(𝑃𝐴𝐹𝐿(fl,V) (𝑃,𝑇),G, 𝑃) ≤ FR(fl(𝑃,𝑇),G, 𝑃)
where FR (First Ranking) [Xie et al. 2022] denotes the best suspiciousness ranking of the fault
statements in 𝐺 :

FR(𝑓 ,G, 𝑃) = min
𝑠∈G

Rank(𝑓 , 𝑠, 𝑃)

and Rank(𝑓 , 𝑠, P) denotes the ranking of the statement 𝑠 in program 𝑃 when scoring function 𝑓 is
used:

Rank(𝑓 , 𝑠, 𝑃) =
∑︁
𝑠′∈𝑃

1𝑓 (𝑠′)≥ 𝑓 (𝑠) .

That is, an enhanced fault localizer enables developers to face fault statements earlier. Note that we
can use other metrics, such as AR (Average Ranking) [Xie et al. 2022], instead of FR. In this paper,
we use FR, one of the most popular metrics used in prior works [Li et al. 2021; Xie et al. 2022].

3.2 Crosswords
Our key idea to solve the problem is to introduce and use a simple domain-specific language,
FPL (Fault Pattern-Description Language), to describe various fault patterns in buggy program
versions. PAFL updates the suspiciousness scores of each statement (i.e., node) using suspicious
tokens (mined from the past buggy versions). If a statement is related to a suspicious token, the
suspiciousness score increases. PAFL updates the suspiciousness scores by adding the maximum
suspiciousness score of the tokens in the statement and its adjacent statements.
Intuitively, an instance of our domain-specific language 𝑐 ∈ FPL, called crossword, describes a

fault pattern using suspicious tokens and how they affect the suspiciousness scores of statements.
A crossword maps each token to a suspiciousness score. If a statement contains these tokens, the
suspiciousness score of the statement is increased with the mapped scores of the tokens. The
following defines the syntax and semantics of our fault pattern description language.
Syntax. A crossword c ∈ FPL is a tuple of five nodes:

FPL = Node × Node × Node × Node × Node.

Given a crossword c = (𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5), we refer to 𝑛1 as the center, 𝑛2 the predecessor, 𝑛3 the
successor, 𝑛4 the parent, and 𝑛5 the child. A crossword can be visualized as shown in Fig. 6d, where:
• 𝑛1 corresponds to the centered (gray-colored) node,
• 𝑛2 and𝑛3 correspond to the predecessor and successor nodes of𝑛1, connected with red-colored
edges, and
• 𝑛4 and 𝑛5 correspond to the parent and child nodes of 𝑛1, connected with blue-colored edges.

A node contains a map from tokens to real numbers (i.e., suspiciousness scores of tokens):
Node = Token→ R.

For example, node 𝑛1 = {‘if’ : 0.3} in Fig. 6d maps the token ‘if’ to 0.3, and node 𝑛5 = {‘return’ : 0.2,
‘y’ : 0.1}

maps tokens ‘return’ and ‘y’ to 0.2 and 0.1, respectively.
Semantics. We use crosswords to update the suspiciousness scores computed by the baseline fault
localizer. Suppose that 𝑠 is a statement in program 𝑃 and 𝑟 ∈ R is the suspiciousness score of 𝑠

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 129. Publication date: April 2025.

PAFL: Enhancing Fault Localizers by Leveraging Project-Specific Fault Patterns 129:9

computed by the baseline fault localizer. Applying c = (𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5) to statement 𝑠 , denoted
c(𝑟, 𝑠, 𝑃), computes a new score as follows:

c(𝑟, 𝑠, 𝑃) = 𝑟 + max
𝑡 ∈tokens ({𝑠 })

𝑛1 (𝑡) + max
𝑡 ∈tokens (pred (P,s))

𝑛2 (𝑡)+

max
𝑡 ∈tokens (succ (P,s))

𝑛3 (𝑡) + max
𝑡 ∈tokens (parent (P,s))

𝑛4 (𝑡) + max
𝑡 ∈tokens (child (P,s))

𝑛5 (𝑡).

That is, a crossword increases the suspiciousness score of a statement if the statement or its adjacent
statements contain tokens that are mapped in the corresponding nodes.
For example, the crossword in Fig. 6d increases the suspiciousness score of statement 𝑠1 in

Fig. 6a by 0.2 because its child statement 𝑠6 contains the token ‘return’ mapped to 0.2 in 𝑛5. The
suspiciousness score of statement 𝑠2 is increased by 0.34 because its successor statement 𝑠3 contains
the token ‘y’ and the parent statement 𝑠1 contains the token ‘x’, which are mapped to 0.13 and
0.21, respectively. Similarly, the suspiciousness scores of statements 𝑠3 and 𝑠6 are increased by 0.21
because their parent 𝑠1 contains the token ‘x’, which is mapped to 0.21 in 𝑛4. The suspiciousness
score of statement 𝑠4 increases the most by the crossword. The score is increased by 0.84 as the
statement 𝑠4 contains the token ‘if’, 𝑠6 contains the token ‘y’, 𝑠1 contains the token ‘x’, and 𝑠5
contains the tokens ‘return’, which are mapped to 0.3, 0.13, 0.21, and 0.2 in the nodes 𝑛1, 𝑛3, 𝑛4, and
𝑛5, respectively. The suspiciousness score of statement 𝑠5 is increased by 0.21 because its parent
statement 𝑠4 contains the token ‘x’ mapped to 0.21 in 𝑛4.

If Ochiai is used as the baseline fault localizer, the suspiciousness scores of statements 𝑠1, 𝑠2, 𝑠3,
𝑠4, 𝑠5, and 𝑠6 are updated as follows (the column corresponding to the fault line 𝑠4 is gray-colored,
and the highest score is highlighted in bold):

𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 𝑠6
Before 0.44 0.44 0.44 0.44 0.57 0.0
After 0.64 0.78 0.65 1.28 0.78 0.21

Before updating the suspiciousness scores, 𝑠4 has the second-highest score of 0.44, while 𝑠5 has the
highest score of 0.57. After the update, 𝑠4 receives the highest score of 1.28; we can now identify
the fault line as the top-1 suspicious statement.
We would like to note that formulas for adjusting the suspiciousness score are a design choice.

For example, we can incorporate the number of tokens in each statement into the formula (e.g.,
statements with more tokens are considered more suspicious). In this work, we adopt a simple and
straightforward approach that adds the maximum suspiciousness score of the tokens in a statement
and its adjacent statements. Exploring more sophisticated formulas could enhance performance,
making it an interesting avenue for future work.

Extension of Our Language. Our fault pattern-description language FPL can be extended in
several ways to enhance its expressiveness. For example, one possible extension is to define a
generalized language, ExtendedFPL, as follows:

ExtendedFPL = Node × Node∗ × Node∗ × Node∗ × Node∗ .

In the above generalized language, a crossword (𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5) ∈ ExtendedFPL (𝑛 denotes a
sequence of nodes) can have multiple predecessor, successor, ancestor, and descendant nodes. For
example, 𝑛4 = ⟨𝑛′1, 𝑛′2, . . . , 𝑛′𝑝⟩ denotes ancestor nodes where the node 𝑛′1 is a parent node of the
center node 𝑛1, the node 𝑛′2 is a parent node of the node 𝑛

′
1, and so on. Thus, the original language

Crossword can be seen as a special case of ExtendedFPL, where each sequence has only one node.
Additionally, ExtendedFPL can be further extended by considering the successor and predecessor
(resp., parent and child) nodes of the parent and child nodes (resp., successor and predecessor).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 129. Publication date: April 2025.

129:10 Donguk Kim, Minseok Jeon, Doha Hwang, and Hakjoo Oh

Algorithm 1 PAFL
Input: Baseline fault localizer fl ∈ FL, buggy program versions 𝑉 = {(𝑃1,𝑇1,G1), . . . , (𝑃𝑛,𝑇𝑛,G𝑛)}
Output: Enhanced fault localizer fl′ ∈ FL
1: procedure PAFL(fl, 𝑉)
2: Π ←MineFaultPatterns(fl,V)
3: fl′ ←EnhanceFL(fl,Π)
4: return fl′

5: end procedure
6:
7: procedure EnhanceFL(fl, Π)
8: procedure fl′(𝑃 , 𝑇)
9: E ← GetEmbedding(𝑃,𝑇)
10: C ← CollectCrosswords(E,Π)
11: c ← MergeCrosswords(C)
12: return 𝜆𝑠 ∈ 𝑃 . 𝑐 (fl(𝑃,𝑇) (𝑠), 𝑠, 𝑃)
13: end procedure
14: return fl′

15: end procedure

However, using a more expressive pattern-description language does not necessarily improve
fault localization performance. For example, we experimentally checked that using the extended
language ExtendedFPL often resulted in worse performance than the original language FPL. The
detailed results are presented and discussed in Section 4.3.

3.3 Project-Aware Fault Localization
Algorithm 1 presents our algorithm for project-aware fault localization (PAFL). It takes as input a
baseline fault localizer fl ∈ FL and a set 𝑉 ⊆ Version of buggy program versions:

𝑉 = {(𝑃1,𝑇1,𝐺1), (𝑃2,𝑇2,𝐺2), ..., (𝑃𝑛,𝑇𝑛,𝐺𝑛)}.
As an output, it produces an enhanced fault localizer fl′ ∈ FL.

Overall Procedure. The algorithm first mines (i.e., synthesizes) fault patterns from the given
buggy versions. The MineFaultPatterns function in line 2 synthesizes a set of fault patterns
Π = {(E1, c1), . . . , (E𝑛, c𝑛)}, one for each program version:

(E𝑖 , c𝑖) ∈ Π ⊆ FaultPattern = Embedding × CrossWord

where each fault pattern (E𝑖 , c𝑖) consists of an error embedding E𝑖 and a crossword c𝑖 . The embedding
E𝑖 represents the fault in the 𝑖th version, i.e., (𝑃𝑖 ,𝑇𝑖 ,G𝑖), and c𝑖 denotes the corresponding synthesized
crossword. The method for synthesizing crosswords is explained in Section 3.4.
Next, the algorithm constructs a new fault localizer fl′ by using EnhanceFL. The EnhanceFL

procedure takes baseline fault localizer fl and fault patterns Π, and produces an enhanced localizer
fl′ following the steps in lines 8 through 14. The localizer fl′ takes a program 𝑃 ∈ Program and a
test suite 𝑇 ∈ TestSuite as input, and produces as output a map from statements to suspiciousness
scores (line 12). In line 9, fl′ gets the embedding E of the fault in program 𝑃 using the GetEmbedding
function. In line 10, the CollectCrosswords function produces a set C ⊆ CrossWord of crosswords by
collecting crosswords c𝑖 whose embedding E𝑖 matches E. The collected crosswords C are merged
into a single crossword c in line 11. In line 12, the suspiciousness scores of fl are updated by applying
c to each statement 𝑠 in 𝑃 . The constructed fault localizer is returned in line 14.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 129. Publication date: April 2025.

PAFL: Enhancing Fault Localizers by Leveraging Project-Specific Fault Patterns 129:11

Error Embedding.We represent faults in programs in terms of test execution. The embedding E is
defined as a pair (Epass, Efail) of maps from tokens to natural numbers:

E = (Epass, Efail) ∈ Embedding = (Token→ N)2

where Epass ∈ Token→ N (resp., Efail ∈ Token→ N) maps token t to the number of passing (resp.,
failing) tests that cover the token. The embedding is obtained using GetEmbedding : Program ×
TestSuite→ Embedding, which is defined by

GetEmbedding(𝑃,𝑇) = (Epass, Efail)

where Epass and Efail are:

Epass = 𝜆t .
∑︁

(𝑖,_) ∈𝑇𝑃
pass

∑︁
𝑠∈CovStmts (𝑃,𝑖)

1t∈tokens (𝑠)

Efail = 𝜆t .
∑︁

(𝑖,_) ∈𝑇𝑃
fail

∑︁
𝑠∈CovStmts (𝑃,𝑖)

1t∈tokens (𝑠) .

That is, Epass and Efail describe the number of passing and failing tests that cover each token in the
program, respectively.

Collecting Synthesized Crosswords. Given an error embedding, the algorithm collects crosswords
synthesized from past buggy versions with similar error embeddings. Function CollectCrosswords
takes an embedding E and fault patterns Π = {(E1, c1), . . . , (E𝑛, c𝑛)}, and collects crosswords c𝑖 in
Π such that E𝑖 similar to E:

CollectCrosswords(E,Π) = {c𝑖 | (E𝑖 , c𝑖) ∈ Π, E ≈ E𝑖 }}

where (≈) ⊆ (Token→ N) × (Token→ N) denotes the similarity relation between embeddings.
When E = (Epass, Efail) and E𝑖 = (Epass

𝑖
, Efail

𝑖
), our definition of ≈ is as follows:

E ≈ E𝑖 ⇐⇒ ∥Efail
𝑖
− Epass ∥ ≥ ∥Efail

𝑖
− Efail ∥

where ∥E1 − E2∥ denotes the Euclidean distance between maps:

∥E1 − E2∥ =
√︄ ∑︁

𝑡 ∈Token

(E1 (𝑡) − E2 (𝑡))2 .

The intuition is that two faults can be considered similar if failing tests cover similar tokens while
passing tests cover different tokens. In other words, we consider two faults to be similar if the
distance between the failure maps (∥Efail

𝑖
− Efail ∥) is smaller than the distance between the failure

and pass maps (∥Efail
𝑖
− Epass ∥). We note that the similarity measure is also a design choice; other

similarity measures can be used.

Merging Crosswords. Let C = {c1, . . . , ck} be a set of crosswords. Function MergeCrosswords ∈
2CrossWord → CrossWord merges C into a single crossword as follows:

MergeCrosswords(C) =
(
𝜆t .

k∑︁
i=1

ni
1 (t), 𝜆t .

k∑︁
i=1

ni
2 (t), 𝜆t .

k∑︁
i=1

ni
3 (t), 𝜆t .

k∑︁
i=1

ni
4 (t), 𝜆t .

k∑︁
i=1

ni
5 (t)

)
where c𝑖 = (𝑛𝑖1, 𝑛𝑖2, 𝑛𝑖3, 𝑛𝑖4, 𝑛𝑖5). That is, crosswords mined from versions with similar faults are
employed to update the suspiciousness scores in our approach.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 129. Publication date: April 2025.

129:12 Donguk Kim, Minseok Jeon, Doha Hwang, and Hakjoo Oh

Algorithm 2Mining fault patterns
Input: Baseline fault localizer fl, buggy program versions 𝑉 = {(𝑃1,𝑇1,G1), . . . , (𝑃𝑛,𝑇𝑛,G𝑛)}.
Output: Fault patterns Π = {(E1, c1), . . . , (E𝑛, c𝑛)}
1: procedureMineFaultPatterns(fl,V)
2: for 𝑖 = 1 to 𝑛 do
3: c𝑖 ← (𝜆𝑡 .0, 𝜆𝑡 .0, 𝜆𝑡 .0, 𝜆𝑡 .0, 𝜆𝑡 .0)
4: E𝑖 ← GetEmbedding(𝑃𝑖 ,𝑇𝑖)
5: for 𝑗 = 1 to 𝑖 do
6: if E𝑖 ≈ E 𝑗 then
7: c𝑗 ← Refine(c𝑗 , (𝑃𝑖 ,𝑇𝑖 ,G𝑖), fl)
8: end if
9: end for
10: end for
11: return {(E1, c1), . . . , (E𝑛, c𝑛)}
12: end procedure

3.4 Mining Fault Patterns
Now, we describe the MineFaultPatterns procedure, which synthesizes crosswords from past
buggy versions of the target project.

Objective. The goal of the procedure is to produce fault patterns Π = {(E1, c1), . . . , (E𝑛, c𝑛)} from
given buggy program versions V = {(𝑃1,𝑇1,G1), . . . , (𝑃𝑛,𝑇𝑛,G𝑛)} and baseline fault localizer fl. The
objective is to find Π that maximally enhances the performance of fl over V , i.e.,

Find Π that minimizes
𝑛∑︁
𝑖=1

FR(fl′ (𝑃𝑖 ,𝑇𝑖),𝐺𝑖 , 𝑃𝑖). (1)

where fl′ = EnhanceFL(fl,Π) denotes the fault localizer enhanced by Π (Algorithm 1).

Overall Mining Algorithm. Algorithm 2 presents the overall fault pattern mining procedure.
It takes as input a baseline fault localizer fl and buggy program versions V = {(𝑃1,𝑇1,G1), . . . ,
(𝑃𝑛,𝑇𝑛,G𝑛)} where we assume that (𝑃𝑖 ,𝑇𝑖 ,G𝑖) denotes the 𝑖th buggy program version. As an output,
the algorithm returns mined fault patterns Π = {(E1, c1), . . . , (E𝑛, c𝑛)}.

In lines 2 through 10, the algorithm iteratively synthesizes and updates crosswords using the 𝑖th
buggy program version. In line 3, the algorithm first initializes a new crossword c𝑖 . Then, it gets
the error embedding E𝑖 of the 𝑖th version (line 4). In lines 5 through 9, the algorithm updates the
crosswords {c1, . . . , c𝑖 } using the 𝑖th version. In each iteration, the algorithm updates the crossword
c𝑗 using Refine if the corresponding error embedding E 𝑗 is similar to the error embedding E𝑖 (i.e.,
E𝑖 ≈ E 𝑗). That is, crosswords that will be used when localizing faults in the 𝑖th program version
are updated. The function Refine(𝑐 𝑗 , (𝑃𝑖 ,𝑇𝑖 ,G𝑖), fl) aims to refine the crossword c𝑗 ; the refined
crossword c𝑗 effectively localizes faults in the 𝑖th program version. We expect that the refined
crosswords {c1, . . . , c𝑛} would minimize (1). Upon termination, the algorithm returns the mined
fault patterns.

Refining a Crossword. Our crossword-refinement procedure Refine refines the given crossword
c to effectively localize faults in the given buggy program version (𝑃,𝑇 ,G). It mutates each node in
the input crossword using various tokens (in the buggy version of the project) and incorporates the
effects of these mutations into the refined crossword. Algorithm 3 presents the crossword-refining
procedure Refine. It takes as input a crossword c = (𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5), a buggy program version

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 129. Publication date: April 2025.

PAFL: Enhancing Fault Localizers by Leveraging Project-Specific Fault Patterns 129:13

Algorithm 3 Refining a crossword
Input: Crossword c = (𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5), buggy program version (𝑃,𝑇 ,G), fault localizer fl
Output: Updated crossword (𝑛′′1 , 𝑛′′2 , 𝑛′′3 , 𝑛′′4 , 𝑛′′5)
1: procedure Refine(c, (𝑃,𝑇 ,G), fl)
2: (𝑛′′1 , 𝑛′′2 , 𝑛′′3 , 𝑛′′4 , 𝑛′′5) ← c
3: for each 𝑖 ∈ {1, 2, 3, 4, 5} do
4: 𝑊 ← TokensRelatedToFaults(P,𝐺, 𝑖)
5: 𝑊 ←𝑊 ∪ {𝑡 | 𝑛𝑖 (𝑡) > 0}
6: for each 𝑡 ∈𝑊 do
7: c′ ← Mutate(c, 𝑖, 𝑡)
8: 𝑟 ← FR(𝜆𝑠. 𝑐 (fl(𝑃,𝑇) (𝑠),𝐺, 𝑃))
9: 𝑟 ′ ← FR(𝜆𝑠. 𝑐′ (fl(𝑃,𝑇) (𝑠),𝐺, 𝑃))
10: 𝑛′′𝑖 ← UpdateNode(𝑛′′𝑖 , 𝑡, 𝑟 , 𝑟 ′)
11: end for
12: end for
13: return (𝑛′′1 , 𝑛′′2 , 𝑛′′3 , 𝑛′′4 , 𝑛′′5)
14: end procedure

(𝑃,𝑇 ,G), and a baseline fault localizer fl. As output, it returns a refined crossword. In line 2, the
algorithm initializes a crossword (𝑛′′1 , 𝑛′′2 , 𝑛′′3 , 𝑛′′4 , 𝑛′′5) with c. In lines 3 through 12, the algorithm
iteratively mutates a node 𝑛𝑖 in the crossword c = (𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5) and refines the node 𝑛′′𝑖 . In
lines 4 and 5, the algorithm collects candidate tokens as𝑊 for the mutation:

TokensRelatedToFaults(P,G, 𝑖) =


tokens(G) if 𝑖 = 1
tokens(pred (P,G)) if 𝑖 = 2
tokens(succ(P,G)) if 𝑖 = 3
tokens(parent (P,G)) if 𝑖 = 4
tokens(child (P,G)) if 𝑖 = 5

Intuitively, TokensRelatedToFaults(P,G, 𝑖) collects promising tokens such that assigning a high
score in 𝑛𝑖 would improve the fault localization for the given buggy version. The algorithm also
collects the tokens mapped in the node 𝑛𝑖 for checking whether the tokens have negative effect in
the localization.

In lines 6 through 11, the algorithm iteratively mutates a node𝑛𝑖 using a token 𝑡 ∈𝑊 , and updates
the node𝑛′′𝑖 . In line 8, the algorithmmutates the given crosswordwithMutate((𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5), 𝑖, 𝑡).
It returns an updated crossword (𝑛′1, 𝑛′2, 𝑛′3, 𝑛′4, 𝑛′5) satisfying: for 𝑗 ∈ {1, . . . , 5},

𝑛′𝑗 =

{
𝑛 𝑗 if 𝑖 ≠ 𝑗

𝜆𝑡 ′ .if 𝑡 ′ = 𝑡 then 1 else 𝑛 𝑗 (𝑡) if 𝑖 = 𝑗 .

Our algorithm is designed to assign a score in [0, 1] to a token in crosswords; 1 is the highest score
that can be assigned. After the mutation, the algorithm gets the performance of the original and
mutated crosswords as 𝑟 and 𝑟 ′, respectively. Then, the algorithm reflects the effect of the mutation
to the node 𝑛′′𝑖 using the function UpdateNode(𝑛′′𝑖 , 𝑡, 𝑟 , 𝑟 ′) (line 10). It returns a refined node as
follows:
• If 𝑟 ′ ≤ 𝑟 (the performance is improved), it returns:

𝜆𝑡 ′ . if 𝑡 ′ = 𝑡 then 𝑛′′𝑖 (𝑡) + (1 − 𝑛′′𝑖 (𝑡)) × (1 −
𝑟 ′

𝑟
) else 𝑛′′𝑖 (𝑡 ′).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 129. Publication date: April 2025.

129:14 Donguk Kim, Minseok Jeon, Doha Hwang, and Hakjoo Oh

• Otherwise (the performance is unimproved), it returns:

𝜆𝑡 ′ . if 𝑡 ′ = 𝑡 then 𝑛′′𝑖 (𝑡) − (𝑛′′𝑖 (𝑡)) × (1 −
𝑟

𝑟 ′
) else 𝑛′′𝑖 (𝑡 ′).

That is, if the mutation is beneficial (resp., detrimental), the score mapped to the token 𝑡 increases
toward 1 (resp., decreases toward 0). Note that the updated score is closer to 1 (resp., 0) if the
mutation is more effective. After the iterations, the algorithm returns the updated crossword
(𝑛′′1 , 𝑛′′2 , 𝑛′′3 , 𝑛′′4 , 𝑛′′5) in line 13.

3.5 Running Example of Refining a Crossword
Suppose the given input crossword 𝑐 is (𝜆𝑡 .0, 𝜆𝑡 .0, 𝜆𝑡 .0, 𝜆𝑡 .0, 𝜆𝑡 .0), the baseline fault localizer is
Ochiai, and the buggy program version (𝑃,𝑇 ,𝐺) corresponds to the running example in Fig. 6 as
follows.

𝑃 = ⟨(1, ⟨int, fun, int, x⟩), (2, ⟨int, y,=, 100⟩), ..., (5, ⟨return,−, y⟩), (6, ⟨return, y⟩)⟩
𝑇 = {(0, 0), (1, 1), (99, 99), (100, 100), (101,−101), (200,−200)}
𝐺 = {(4, ⟨if, x, >=, 100⟩)}

The fault-related tokens are then collected using TokensRelatedToFaults(P,G, 𝑖), as follows:

TokensRelatedToFaults(P,G, 𝑖) =


{if, x, >=, 100} if 𝑖 = 1
{y,=, x} if 𝑖 = 2
{return, y} if 𝑖 = 3
{int, fun, x} if 𝑖 = 4
{return,−, y} if 𝑖 = 5

From the collected tokens, the algorithm enumerates 15 mutated crosswords (# of collected tokens
above) and refines the input crossword 𝑐 using these mutations as follows:

Mutated crosswords Updated crossword

{‘if’ : 1.0}{} {}

{}

{}

, {‘x’ : 1.0}{} {}

{}

{}

, . . . , {}{} {}

{}

{‘y’ : 1.0}

{‘if’ : 0.8, ‘x’ : 0.4,. . . }{. . . } {. . . }

{. . . }

{. . . , ‘y’ : 0.6}

The first and second mutations increase the suspiciousness ranking of the faulty statement (i.e.,
(4, ⟨if, x, >=, 100⟩)) from 5 to 1 and 31, respectively. In the updated crossword, the tokens if’ and
x’ in {if’ : 0.8, x’ : 0.4,. . . } are assigned values of 0.8 (1 − 1

5) and 0.4 (1 − 3
5), respectively.

4 Evaluation
In this section, we experimentally evaluate PAFL. Our evaluation aims to answer the following
research questions:
• (RQ1) Performance of PAFL: Does PAFL effectively, robustly, and efficiently improve the
performance of baseline fault localizers?
• (RQ2) Comparison with State-of-the-Art: How does PAFL perform compared to existing
state-of-the-art fault localizer enhancing techniques?
• (RQ3) Effect of language extension: How does the extension of fault pattern-description
language affect the performance of PAFL?
• (RQ4) Learned Insight: Can the used crosswords (i.e., fault patterns) provide meaningful
insights to the developers?

1We use the max tie-breaker, which assigns the worst ranking to tied statements (i.e., those with the same suspiciousness
scores). Details of the max tie-breaker are provided in Section 4.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 129. Publication date: April 2025.

PAFL: Enhancing Fault Localizers by Leveraging Project-Specific Fault Patterns 129:15

Table 1. Statistics of the benchmark projects.

Language Project #Versions LOC Test LOC #Tests #Fault stmts

C
libchewing 8 106.0K 3.6K 18 3.5
libxml2 7 231.0K 33.5K 41 6.6
openssl 26 947.8K 102.3K 226 8.3

C++

cpp-peglib 10 15.4K 1.7K 134 6.0
cppcheck 30 274.9K 44.6K 92 5.9
exiv2 20 83.4K 17.5K 6 4.3
proj 28 215.3K 42.5K 54 8.4
yaml-cpp 10 76.8K 19.6K 15 2.0

Python

thefuck 31 9.8K 2.9K 1,649 3.2
fastapi 15 23.4K 1.7K 432 3.5
spacy 7 97.2K 6.2K 1,711 2.0
YouTube-dl 32 119.8K 15.9K 223 2.9

Benchmarks. We implemented PAFL for C/C++ and Python and evaluated it on 12 real-world
projects. For C/C++, we used eight benchmark projects from BugsC++ [An et al. 2023], a collection
of C/C++ projects with test cases. Among the benchmark projects, we collected those with at
least seven buggy versions and reproducible bugs. For Python, we collected four projects from
BugsInPy [Widyasari et al. 2020] using the same selection criteria. We would like to note that real-
world projects usually satisfy the criteria of having at least seven buggy versions with reproducible
bugs. The majority of modern real-world projects are developed with version control systems such
as Git, and enough number of (e.g., more than seven) bugs and fixes have usually been accumulated
during their development. Also, the buggy and fix versions can be easily collected using commit
messages (e.g., whether the commit messages include ‘fix’).

Table 1 shows detailed information about the 12 projects. The column “Project” lists the project
names, and the column “#Versions” shows the number of buggy versions in the projects. For
example, PAFL was evaluated on 224 buggy versions in total. The columns “LOC,” “#Tests,” and
“Test LOC” represent the number of lines, test cases, and lines covered by the test case that covers
the most lines, respectively, in the latest version of each project. The column “#Fault stmts” shows
the average number of ground-truth fault statements across the buggy versions.

Setup. When evaluating PAFL for each project, we first sorted the project versions chronologically
and then sequentially evaluated PAFL on the sorted versions. That is when evaluating PAFL on the
𝑛th version of a project, we used the past 𝑛 − 1 versions 𝑉 = {(P1,𝑇1,G1), . . . , (P𝑛−1,𝑇𝑛−1,G𝑛−1)}
as a training data to mine the fault patterns Π = {(E1, c1), . . . , (E𝑛−1, c𝑛−1)}. All experiments were
conducted on a 64-bit Linux (Ubuntu 18.04.5) server with 2.2 GHz Intel(R) Xeon CPUs, 128 GB
RAM, and an NVIDIA RTX A6000 GPU with 48 GB of memory.

Baseline Fault Localizers. We used seven baseline fault localization techniques used in recent
work [Xie et al. 2022]: Ochiai [Abreu et al. 2006], DStar [Wong et al. 2012], Barinel [Abreu
et al. 2009],MLP-FL [Chen et al. 2016], CNN-FL [Zhang et al. 2019], RNN-FL [Zhang et al. 2021],
and LLMAO [Yang et al. 2024]. Ochiai, DStar, and Barinel are well-known spectrum-based
fault localization (SBFL) techniques. MLP-FL, CNN-FL, and RNN-FL are deep learning-based fault
localization (DLFL) techniques. LLMAO is a state-of-the-art LLM-based fault localization tech-
nique. In our experiments on DLFL techniques, we used the artifact of Xie et al. [2022], which

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 129. Publication date: April 2025.

129:16 Donguk Kim, Minseok Jeon, Doha Hwang, and Hakjoo Oh

provides the implementations of the three baseline DLFL techniques. When evaluating LLMAO,
we used the artifact provided by the authors. Since PAFL is designed for statement-level fault
localization, we excluded coarser-level (e.g., method-level) fault localizers such as DeepFL [Li et al.
2019], Fluccs [Sohn and Yoo 2017], TraPT [Li and Zhang 2017], ProFL [Lou et al. 2020], and
BugPecker [Cao et al. 2020].

Metrics. We measure the performance using the following widely used metrics [Xie et al. 2022]:
• Number of Top-K [Kochhar et al. 2016]: The number of buggy versions where a faulty
statement is included in the top-K suspicious statements.
• MFR (Mean First Rank) [Lou et al. 2020]: FR (First Rank) is the best ranking of faulty
statements in a version. MFR is the mean value of FR over the versions.
• MAR (Mean Average Rank) [Lou et al. 2020]: AR (Average Rank) is the average ranking of
faulty statements in a version. MAR is the mean value of AR over the versions.

Tiebreaking.When multiple statements have the same suspiciousness scores (i.e., tie), we used
the max tie-breaker [Yu et al. 2008]. The max tie-breaker assigns the sum of the number of
the tied statements and the number of statements with higher suspiciousness scores to the tied
statements [Sohn and Yoo 2017] (i.e., assigning the worst ranking to the tied statements).

4.1 RQ1: Performance of PAFL
PAFL effectively, robustly, and efficiently improved the performance of the baseline fault localization
techniques. Table 2, Table 3, and Table 4 show the evaluation results of PAFL on the SBFL, DLFL,
and LLM-based FL techniques, respectively, for the 12 projects. In Table, for example, 2 the columns
“Ochiai,” “DStar,” and “Barinel” present the performance of the three baseline SBFL techniques,
and the columns “PAFL” show the performance of PAFL when the corresponding baselines were
used. The columns “Delta” represent the relative improvement of PAFL compared to the baselines.
For example, the “Delta” of the top-10 metric (higher is better) describes the increment in the metric.
The “Delta” of the MFR and MAR metrics (lower is better) describes the decrease in the metrics.
The best performance for each metric is highlighted in bold.

Effectiveness of PAFL on SBFL. Table 2 shows that PAFL effectively improved the baseline
SBFL techniques for the 12 projects and three metrics. For example, applying PAFL improved the
performance of the baselines for all the 12 projects in terms of the MFR and MAR metrics. In
particular, in terms of the top-K metrics, PAFL significantly improved the SBFL techniques. For
example, PAFL improved 100%, 62.5%, and 160% of the top-1 metric in Ochiai, DStar, and Barinel,
respectively, in total. That is, PAFL enabled the localizers to provide the faulty statements at the
first rank 62.5% ∼ 160% more frequently. For the top-5 and top-10 metrics, PAFL improved the
baseline SBFL techniques by an average of 83.4% and 52.4%, respectively. We would like to note
that SBFL techniques are actively used in practice because of their simplicity, and Top-1 and Top-5
are the most important metrics from a practical perspective [Kochhar et al. 2016].

Effectiveness of PAFL on DLFL. Table 3 shows the evaluation results of PAFL on the DLFL
techniques. In the literature, the baseline DLFL techniques had shown worse performance than
the SBFL techniques in Java projects [Xie et al. 2022]; this was also the case in our evaluation.
For example, the MFR of MLP-FL and Ochiai for the cpp-peglib project are 219.2 and 151.0 (i.e.,
Ochiai is 31.1% better thanMLP-FL), respectively. In the table, the columns “MLP-FL,” “CNN-FL,”
and “RNN-FL” present the performance of the three baseline DLFL techniques, and the columns
“PAFL” show the performance when the corresponding baselines were used. As the DLFL techniques
have randomness in their learning procedure, we ran each one five times and reported the average

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 129. Publication date: April 2025.

PAFL: Enhancing Fault Localizers by Leveraging Project-Specific Fault Patterns 129:17

Table 2. Performance of PAFL for the three baseline SBFL techniques across the 12 C/C++ and Python projects.
The columns “Ochiai,” “DStar,” and “Barinel” present the performance of the baseline fault localizers. The
columns “PAFL” present the performance of our technique when the corresponding baselines were used. The
columns “Delta” present the relative improvement when PAFL was applied.

Project Metric Ochiai PAFL Delta DStar PAFL Delta Barinel PAFL Delta

cpp-peglib
MFR 151.0 138.8 8.1% 151.0 138.0 8.6% 153.3 140.3 8.5%
MAR 208.6 195.4 6.3% 208.6 194.6 6.7% 210.9 196.5 6.8%
Top-10 3 3 0.0% 3 3 0.0% 3 3 0.0%

cppcheck
MFR 2883.1 2740.9 4.9% 2883.1 2690.1 6.7% 2883.1 2710.1 6.0%
MAR 3654.4 3492.2 4.4% 3654.4 3380.1 7.5% 3654.4 3431.2 6.1%
Top-10 0 2 ∞% 0 2 ∞% 0 2 ∞%

exiv2
MFR 607.1 283.0 53.4% 607.1 283.1 53.4% 580.3 228.4 60.6%
MAR 673.4 306.8 54.4% 673.4 307.1 54.4% 646.6 252.7 60.9%
Top-10 5 10 100.0% 5 10 100.0% 4 9 125.0%

libchewing
MFR 776.0 690.5 11.0% 776.0 693.8 10.6% 776.0 693.8 10.6%
MAR 802.6 716.7 10.7% 802.6 718.9 10.4% 802.6 718.8 10.4%
Top-10 0 0 0.0% 0 0 0.0% 0 0 0.0%

libxml2
MFR 322.7 309.4 4.1% 322.7 309.6 4.1% 322.7 308.0 4.6%
MAR 709.1 662.3 6.6% 709.1 627.3 11.5% 709.1 636.8 10.2%
Top-10 1 2 100.0% 1 2 100.0% 1 2 100.0%

proj
MFR 8741.6 6937.8 20.6% 8744.8 6947.6 20.6% 8832.8 7036.5 20.3%
MAR 9175.9 7983.0 13.0% 9179.1 7985.6 13.0% 9267.1 8072.3 12.9%
Top-10 0 0 0.0% 0 0 0.0% 0 0 0.0%

openssl
MFR 10514.2 9296.8 11.6% 10635.2 8387.7 21.1% 11471.1 10142.5 11.6%
MAR 11979.0 11039.8 7.8% 12198.0 10453.8 14.3% 12616.0 11688.3 7.4%
Top-10 0 0 0.0% 0 0 0.0% 0 0 0.0%

yaml-cpp
MFR 370.4 335.8 9.3% 370.4 335.5 9.4% 370.4 335.8 9.3%
MAR 379.8 345.3 9.1% 379.8 345.0 9.2% 379.8 345.3 9.1%
Top-10 0 0 0.0% 0 0 0.0% 0 0 0.0%

thefuck
MFR 16.0 13.6 15.1% 15.1 12.9 14.1% 18.7 12.9 31.0%
MAR 19.5 17.1 12.2% 18.4 16.3 11.3% 22.8 17.7 22.5%
Top-10 18 20 11.1% 21 21 0.0% 12 20 66.7%

fastapi
MFR 189.2 185.1 2.2% 196.5 188.1 4.2% 84.3 80.3 4.7%
MAR 195.2 191.5 1.9% 201.6 199.2 1.2% 86.9 83.2 4.3%
Top-10 5 5 0.0% 5 5 0.0% 5 5 0.0%

spacy
MFR 28.4 17.3 39.2% 28.4 17.3 39.2% 28.4 17.3 39.2%
MAR 30.6 25.0 18.2% 30.6 25.0 18.2% 30.6 25.0 18.2%
Top-10 3 4 33.3% 3 4 33.3% 3 4 33.3%

YouTube-dl
MFR 273.2 229.1 16.1% 1470.5 1132.0 23.0% 173.8 117.7 32.3%
MAR 284.9 244.3 14.3% 1683.2 1350.3 19.8% 179.9 131.2 27.1%
Top-10 0 3 ∞% 0 3 ∞% 0 7 ∞%

total

MFR 2869.3 2441.7 14.9% 3055.1 2459.8 19.5% 2968.6 2520.3 15.1%
MAR 3221.5 2895.7 10.1% 3447.3 2970.3 13.8% 3282.7 2945.1 10.3%
Top-1 7 14 100.0% 8 13 62.5% 5 13 160.0%
Top-5 22 36 63.6% 25 40 60.0% 15 34 126.7%
Top-10 35 49 40.0% 38 50 31.6% 28 52 85.7%

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 129. Publication date: April 2025.

129:18 Donguk Kim, Minseok Jeon, Doha Hwang, and Hakjoo Oh

Table 3. Performance of PAFL for the three baseline DLFL techniques across the 12 C/C++ and Python projects.
The columns “MLP-FL,” “CNN-FL,” and “RNN-FL” present the performance of the baseline fault localizers.
The columns “PAFL” present the performance of our technique when the corresponding baselines were
used. The columns “Delta” present the relative improvement when PAFL was applied. OOM indicates that
out-of-memory errors occurred in the baseline localizers; the corresponding results of PAFL are unavailable
(i.e., N/A).

Project Metric MLP-FL PAFL Delta CNN-FL PAFL Delta RNN-FL PAFL Delta

cpp-peglib
MFR 219.2 219.2 0.0% 328.6 300.3 8.6% 220.2 220.1 0.0%
MAR 319.6 319.4 0.1% 399.3 385.7 3.4% 320.9 320.7 0.1%
Top-10 0.2 0.2 0.0% 0.0 0.0 0.0% 0.8 0.8 0.0%

cppcheck
MFR 3524.4 3376.3 4.2% OOM N/A N/A OOM N/A N/A
MAR 5494.5 5342.8 2.8% OOM N/A N/A OOM N/A N/A
Top-10 0.4 0.6 50.0% OOM N/A N/A OOM N/A N/A

exiv2
MFR 461.2 433.2 6.1% OOM N/A N/A OOM N/A N/A
MAR 711.2 678.2 4.6% OOM N/A N/A OOM N/A N/A
Top-10 1.2 2.0 66.7% OOM N/A N/A OOM N/A N/A

libchewing
MFR 640.7 638.0 0.4% 1053.0 990.8 5.9% 712.8 709.5 0.5%
MAR 907.4 904.9 0.3% 1211.7 1158.0 4.4% 942.1 939.1 0.3%
Top-10 0.4 0.4 0.0% 0.0 0.0 0.0% 0.0 0.0 0.0%

libxml2
MFR 539.7 510.5 5.4% OOM N/A N/A OOM N/A N/A
MAR 1077.0 1010.2 6.2% OOM N/A N/A OOM N/A N/A
Top-10 0.0 0.2 ∞% OOM N/A N/A OOM N/A N/A

proj
MFR 4897.4 4873.0 0.5% OOM N/A N/A OOM N/A N/A
MAR 7404.8 7368.8 0.5% OOM N/A N/A OOM N/A N/A
Top-10 0.8 0.8 0.0% OOM N/A N/A OOM N/A N/A

openssl
MFR OOM N/A N/A OOM N/A N/A OOM N/A N/A
MAR OOM N/A N/A OOM N/A N/A OOM N/A N/A
Top-10 OOM N/A N/A OOM N/A N/A OOM N/A N/A

yaml-cpp
MFR 307.4 305.6 0.6% OOM N/A N/A OOM N/A N/A
MAR 335.0 333.7 0.4% OOM N/A N/A OOM N/A N/A
Top-10 0.8 1.0 25.0% OOM N/A N/A OOM N/A N/A

thefuck
MFR 28.9 28.2 2.3% 147.9 120.2 18.7% 33.4 32.6 2.5%
MAR 39.5 38.8 1.9% 151.5 124.1 18.1% 42.7 41.9 2.1%
Top-10 13.0 13.2 1.5% 0.0 2.8 ∞% 10.6 11.0 3.8%

fastapi
MFR 186.1 184.2 1.0% 394.2 362.1 8.1% 128.9 128.7 0.1%
MAR 257.7 255.6 0.8% 462.2 443.1 4.1% 193.7 191.8 1.0%
Top-10 2.0 2.0 0.0% 0.0 0.6 ∞% 1.6 1.6 0.0%

spacy
MFR 242.2 242.1 0.0% 672.2 650.6 3.2% 193.6 193.6 0.0%
MAR 343.5 343.2 0.1% 756.1 748.9 0.9% 256.9 256.9 -0.0%
Top-10 0.8 0.8 0.0% 0.2 0.6 200.0% 0.6 0.6 0.0%

YouTube-dl
MFR 2560.3 2505.9 2.1% OOM N/A N/A OOM N/A N/A
MAR 3413.8 3348.7 1.9% OOM N/A N/A OOM N/A N/A
Top-10 0.2 0.2 0.0% OOM N/A N/A OOM N/A N/A

total

MFR 1273.2 1231.8 3.3% 379.0 347.1 8.4% 172.2 171.4 0.5%
MAR 1865.5 1819.3 2.5% 431.1 406.5 5.7% 236.2 235.1 0.5%
Top-1 6.4 6.4 0.0% 0.2 1.0 400.0% 0.0 0.0 0.0%
Top-5 12.4 13.0 4.8% 0.2 2.6 1200.0% 8.2 8.2 0.0%
Top-10 19.0 20.6 8.4% 0.2 4.0 1900.0% 13.6 14.0 2.9%

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 129. Publication date: April 2025.

PAFL: Enhancing Fault Localizers by Leveraging Project-Specific Fault Patterns 129:19

Table 4. Performance of PAFL for the LLM-based fault localizer LLMAO.

Project Metric LLMAO PAFL Delta Project Metric LLMAO PAFL Delta

cpp-peglib MFR 320.9 320.8 0.0% yaml-cpp MFR 357.6 357.8 -0.1%
MAR 412.1 408.2 0.9% MAR 377.9 379.8 -0.5%

cppcheck MFR 4060.7 3668.3 9.7% thefuck MFR 172.2 111.9 35.0%
MAR 5486.5 5178.3 5.6% MAR 262.4 179.0 31.8%

exiv2 MFR 1167.3 1055.8 9.6% fastapi MFR 246.2 218.3 11.3%
MAR 1435.9 1244.7 13.3% MAR 315.3 286.8 9.0%

libchewing MFR 507.1 508.9 -0.3% spacy MFR 519.7 522.4 -0.5%
MAR 787.5 773.9 1.7% MAR 561.6 563.0 -0.2%

libxml22 MFR 758.4 704.6 7.1% YouTube-dl MFR 2812.9 2451.0 12.9%
MAR 1447.2 1265.5 12.6% MAR 3446.2 2887.1 16.2%

proj MFR 6110.8 5935.1 2.9%

total

MFR 3112.7 2941.8 5.5%
MAR 8411.8 7698.0 8.5% MAR 4515.7 4253.6 5.8%

openssl MFR 10082.6 9884.5 2.0% Top-1 1 1 0.0%
MAR 16587.6 16457.9 0.8% Top-10 11 11 0.0%

results. In the table, OOM indicates that the baseline techniques failed the localization procedure
due to out-of-memory errors2.
PAFL also improved the baseline DLFL techniques. In terms of MFR and MAR, PAFL improved

the baselines for all 21 cases (100%) and 20 out of 21 (95.2%) cases, respectively. In the Top-10 metric,
PAFL showed equal or better performance for all three baselines and 12 projects. In Table 2 and
Table 3, there are 72 cases (12 projects × 6 baselines) of the results, and 57 of them are available. In
terms of the MFR and MAR metrics, PAFL improved the baselines in all 57 cases (100%) and 56 out
of 57 cases (98.2%), respectively. For the top-10 metric, PAFL showed equal or better performance
for all 57 cases (100%).

Effectiveness of PAFL on LLM-based FL. Table 4 shows the evaluation results of PAFL when the
state-of-the-art LLM-based fault localizer LLMAO [Yang et al. 2024] was used as a baseline. When
localizing a fault in a buggy version of a project, we trained LLMAO using the other buggy versions
of the project, enabling the model to learn project-specific fault patterns. In our evaluation, the
LLM-based approach also shows worse performance than the SBFL techniques. For instance, the
MFR of LLMAO and Ochiai for the cpp-peglib project are 151.0 and 320.9 (i.e., Ochiai performed
about 112.8% better than LLMAO), respectively. Overall, PAFL also improved the performance
of LLMAO. In the thefuck project, PAFL improved the MFR and MAR scores by 35.0% and 31.8%,
respectively. In two projects, yaml-cpp, and spacy, however, PAFL slightly degraded (e.g., -0.5%) the
performance of LLMAO in terms of the MFR and MAR metrics. In total, PAFL improved the MFR
and MAR scores by 5.5% and 5.8%, respectively.

Robustness. Applying PAFL to the baselines achieved equal or better performance for the majority
of the versions of the projects. Table 5 presents the ratio of versions in each project that applying
PAFL achieved equal or better performance in terms of FR. For example, in cppcheck, applying
PAFL to Ochiai shows equal or better FR for 93% of the versions. In total, applying PAFL showed
equal or better performance for 93% on average.
2In DL-based approaches, memory requirements increase with the size of Test Loc. This is because these approaches need
to process matrices whose sizes grow significantly with the number of covered lines.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 129. Publication date: April 2025.

129:20 Donguk Kim, Minseok Jeon, Doha Hwang, and Hakjoo Oh

Table 5. Ratio of versions in each project that applying PAFL achieves equal or better FR than the baselines.

Ochiai DStar Barinel MLP-FL CNN-FL RNN-FL LLMAO

cpp-peglib 100% 100% 100% 94% 92% 94% 100%
cppcheck 93% 87% 90% 69% N/A N/A 77%
exiv2 100% 100% 100% 87% N/A N/A 90%
libchewing 100% 100% 100% 90% 72% 95% 75%
libxml2 100% 100% 100% 83% N/A N/A 86%
proj 100% 96% 100% 69% N/A N/A 71%
openssl 96% 92% 96% N/A N/A N/A 65%
yaml-cpp 100% 100% 100% 90% N/A N/A 80%
thefuck 100% 100% 97% 99% 97% 97% 100%
fastapi 100% 100% 100% 96% 93% 95% 100%
spacy 100% 100% 100% 89% 89% 89% 86%
YouTube-dl 100% 94% 100% 93% N/A N/A 94%

total 99% 96% 98% 86% 92% 95% 85%

Fig. 7 shows the detailed results of PAFL for the 12 projects when Ochiai was used as a baseline
fault localizer. In the plots, the blue lines describe how the relative first rank (FR) of PAFL compared
to Ochiai changed along with the version updates. The x-axis represents the versions (higher
indicates a later version), and the y-axis represents the relative FR score (lower indicates a greater
improvement in FR). If the FR scores of Ochiai and PAFL are 10 and 5, respectively, the relative
FR is 0.5 (i.e., applying PAFL improved the FR score). In exiv2 project in Fig 7a, for example,
PAFL showed the same FR score with the baseline (i.e., relative FR is 1.0) in the first version
as there is no past buggy version to mine fault patterns (i.e., Π = ∅). A few versions later (i.e.,
version = 3), PAFL started to show better performance than the baseline as it mined and used fault
patterns. Overall, PAFL achieved strictly better performance for 15 out of 20 versions (75.0%) in the
exiv2 project.

We also checked that the synthesized crosswords converged after a certain number of versions. For
example, when localizing the fault in cppcheck#21, three crosswords synthesized from cppcheck#16,
cppcheck#18, and cppcheck#19 are used, and the three crosswords were almost identical (they share
similar suspicious token combinations).

Limitation of Our Approach. Fig. 7 also shows a limitation of PAFL. In the project spacy (Fig. 7l),
for example, applying PAFL does not affect the performance of the baseline for the majority of the
versions (85.7%, respectively). We found this was because the buggy versions have different fault
patterns (i.e., the fault patterns were not redundant); thus, PAFL failed to mine and use redundant
fault patterns. However, we would like to note that applying PAFL does not cause any harm to the
fault localization performance, and the cost of applying PAFL is negligible, as discussed below.

Efficiency. The overhead of PAFL was negligible. Table 6 shows the overhead cost of PAFL and
the state-of-the-art fault localizer enhancing technique Aeneas [Xie et al. 2022] in minutes. The
columns “PAFL” show the average overhead of PAFL (i.e., including all costs for training and
updating suspiciousness scores) in minutes. The results show that the overhead of PAFL is less
than 14 seconds on average. The maximum overhead was also less than one minute for the largest
project, openssl.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 129. Publication date: April 2025.

PAFL: Enhancing Fault Localizers by Leveraging Project-Specific Fault Patterns 129:21

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Version

0.0

0.5

1.0

R
el
at
iv
e
FR

PAFL

(a) Relative FR scores in exiv2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Version

0.0

0.5

1.0

R
el
at
iv
e
FR

PAFL

(b) Relative FR scores in cppcheck.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Version

0.0

0.5

1.0

R
el
at
iv
e
FR

PAFL

(c) Relative FR scores in proj.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version

0.0

0.5

1.0

R
el
at
iv
e
FR

PAFL

(d) Relative FR scores in thefuck.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Version

0.0

0.5

1.0

R
el
at
iv
e
FR

PAFL

(e) Relative FR scores in openssl.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Version

0.0

0.5

1.0
R
el
at
iv
e
FR

PAFL

(f) Relative FR scores in YouTube-dl.

1 2 3 4 5 6 7

Version

0.0

0.5

1.0

R
el
at
iv
e
FR

PAFL

(g) Relative FR scores in libxml2.

1 2 3 4 5 6 7 8 9 10

Version

0.0

0.5

1.0

R
el
at
iv
e
FR

PAFL

(h) Relative FR scores in yaml-cpp.

1 2 3 4 5 6 7 8

Version

0.0

0.5

1.0

R
el
at
iv
e
FR

PAFL

(i) Relative FR scores in libchewing.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Version

0.0

0.5

1.0

R
el
at
iv
e
FR

PAFL

(j) Relative FR scores in fastapi.

1 2 3 4 5 6 7 8 9 10

Version

0.0

0.5

1.0

R
el
at
iv
e
FR

PAFL

(k) Relative FR scores in cpp-peglib.

1 2 3 4 5 6 7

Version

0.0

0.5

1.0

R
el
at
iv
e
FR

PAFL

(l) Relative FR scores in spacy.

Fig. 7. How the relative FR scores of PAFL compared to Ochiai changed with the version updates.

4.2 RQ2: Comparison with State-of-the-Art
We compared PAFL with Aeneas [Xie et al. 2022], a state-of-the-art technique that also aims to
enhance baseline fault localizers. Aeneas is a pre-processing technique that uses data augmentation
to generate additional test results. To evaluate Aeneas, we used the artifact provided by the
authors [Xie et al. 2022]. Aeneas has two hyper-parameters: cp (principle component proportion)
and ep (largest eigenvalue proportion) [Xie et al. 2022]. Intuitively, cp determines the ratio of

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 129. Publication date: April 2025.

129:22 Donguk Kim, Minseok Jeon, Doha Hwang, and Hakjoo Oh

Table 6. The average overhead of Aeneas and PAFL for each project in minutes. “N/A” indicates that the cost
is unavailable because of internal errors or it exceeded the time budget 24 hours.

Aeneas PAFL Aeneas PAFL

cpp-peglib 0.50 0.01 openssl N/A 0.22
cppcheck 248.26 0.03 yaml-cpp 3.02 0.01
exiv2 N/A 0.01 thefuck 8.62 0.01
libchewing 2.14 0.01 fastapi 1.25 0.01
libxml2 750.55 0.05 spacy 14.7 0.03
proj N/A 0.03 YouTube-dl 10.91 0.02

Table 7. Performance of Aeneas, PAFL, and together (Aeneas+PAFL) for the SBFL techniques.

Scenario MFR MAR Top-1 Top-5 Top-10

Ochiai

original 749.6 931.8 7 21 30
Aeneas 1926.3 2477.0 7 24 33
PAFL 702.1 879.6 10 30 39
together 1819.2 2163.1 11 26 33

DStar

original 1005.6 1230.5 8 24 33
Aeneas 3112.6 3730.9 1 6 7
PAFL 884.8 1092.1 11 34 40
together 2872.8 3329.5 2 8 10

Barinel

original 718.7 899.4 5 14 24
Aeneas 697.2 1206.5 4 19 29
PAFL 661.7 831.6 11 28 43
together 617.5 940.1 9 31 42

statements to be removed, and ep affects which statements are removed. For example, if cp is 0.9,
10% of the statements are removed using the ep value. To choose cp and ep, we ran Aeneas on
our benchmarks with various configurations, cp ∈ {0.95, 0.9, 0.85, 0.8} and ep ∈ {0.8, 0.75, 0.7}, and
selected the parameters that achieved the best performance in terms of MFR. The evaluation of
Aeneas was conducted using an NVIDIA RTX A6000 GPU with 48 GB of memory.

Performance Comparison. Table 7 shows the performance of Aeneas and PAFL for the three SBFL
techniques. The rows “Aeneas” and “PAFL” present the performance when Aeneas and PAFL were
applied, respectively. As Aeneas is orthogonal to PAFL, both pre-processing and post-processing
can be applied together. The rows “Together” show the performance of the combination.

Compared toAeneas, PAFLwas farmore effective and robust. Except for the baselineBarinelwith
the metric MFR, PAFL showed far better performance than Aeneas. In DStar, PAFL improved
the baseline, while Aeneas degraded the performance in all the metrics. We checked that this
was because Aeneas removed ground-truth fault statements from the candidates using the two
hyper-parameters cp and ep. The baseline localizer could not give suspiciousness scores to the fault
statements; it assigned theworst ranking to them.Wewould like to note that the table reports the per-
formance of the best configuration of the two hyper-parameters in the 12 (cp ∈ {0.95, 0.9, 0.85, 0.8}
and ep ∈ {0.8, 0.75, 0.7}) candidate configurations.

Compared to using Aeneas and PAFL together (i.e., “together” in Table 7), PAFL alone achieved
overall better performance. The combination showed better performance in only three cases:
MFR of Barinel, Top-5 of Barinel, and Top-1 of Ochiai. The combination even degraded the

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 129. Publication date: April 2025.

PAFL: Enhancing Fault Localizers by Leveraging Project-Specific Fault Patterns 129:23

Table 8. Performance comparison of PAFL when the extended pattern-description language ExtendedCW in-
troduced in Section 3.2 is used. In the language, the number of predecessor, successor, parent, and child
nodes can be configured; we consider seven configurations (1, 1, 1, 1), (0, 0, 0, 0), (2, 1, 1, 1), (1, 2, 1, 1), (1, 1, 2, 1),
(1, 1, 1, 2), (2, 2, 2, 2), where (𝑝, 𝑞, 𝑟, 𝑠) denotes the number of predecessor, successor, parent, and child nodes,
respectively. A column (𝑝, 𝑞, 𝑟, 𝑠) presents the performance of PAFL when the configuration is used.

Metric (1,1,1,1) (0,0,0,0) (2,1,1,1) (1,2,1,1) (1,1,2,1) (1,1,1,2) (2,2,2,2)

MFR 2441.7 2463.0 2444.0 2436.7 2433.9 2441.6 2437.7
MAR 2895.7 2933.3 2888.1 2883.8 2883.1 2895.7 2863.0
Top-1 14 11 14 13 13 12 14
Top-5 36 32 36 33 34 36 34
Top-10 49 44 49 49 49 49 47

baselines in eight cases. This shows that blindly combining the techniques does not always improve
performance. To be effective, the two techniques need to be carefully combined. We leave this as
future work.

Cost Comparison. PAFL was also far more efficient than Aeneas. Table 6 compares the overhead
of Aeneas and PAFL in minutes. In the table, the columns “Aeneas” and “PAFL” present the
average overhead (i.e., total cost − baseline localization cost) of the two techniques in minutes.
The time budget for the overhead was 24 hours. “N/A” indicates that Aeneas failed its procedure
due to its internal errors (exiv2) or it exceeded the time budget (proj and openssl). As the table
shows, PAFL was significantly faster than Aeneas. In the two projects proj and openssl, for example,
Aeneas failed to finish its task within the time budget, while PAFL finished its task within 2 and 13
seconds, respectively, on average.

4.3 RQ3: Effect of Language Extension
Now, we experimentally evaluate how the extension of our fault pattern-description language
affects the performance of PAFL. As an extended language, we consider ExtendedCW introduced
in Section 3.2. Unlike the original language, a center node in ExtendedCW can have multiple
predecessor, successor, parent, and child nodes. Let 𝑝 , 𝑞, 𝑟 , 𝑠 be the number of predecessor, successor,
ancestor (parent), and descendant (child) nodes, respectively. Then, an infinite number of possible
configurations exist. Among them, we consider seven configurations: (1, 1, 1, 1), (0, 0, 0, 0), (2, 1, 1, 1),
(1, 2, 1, 1), (1, 1, 2, 1), (1, 1, 1, 2), and (2, 2, 2, 2). For example, the configuration (1, 1, 1, 1) is the same
as our original language Crossword where a center node has one predecessor, successor, parent,
and child node. In the configuration of (0, 0, 0, 0), a center node does not have any adjacent nodes;
a crossword updates the suspiciousness of statements without considering the adjacent statements.
In the last configuration (2, 2, 2, 2), on the other hand, a center node has a successor that has a
successor, a predecessor that has a predecessor, a parent that has a parent, and a child that has a
child node. As a baseline fault localization technique, we used Ochiai [Abreu et al. 2006].
Table 8 compares the overall performance of the seven configurations for the given metrics. In

the table, a column (𝑝, 𝑞, 𝑟, 𝑠) presents the performance of PAFL when the configuration is used.
The evaluation results show that using more expressive languages does not necessarily improve the
performance of PAFL. The seven configurations show competitive performance across the metrics.
For example, the configuration (2, 2, 2, 2), the most expressive fault pattern-description language,
does not always show the best performance. In terms of the Top-1, Top-5, and Top-10 in total, the
configurations (1, 1, 1, 1) and (1, 2, 1, 1) show overall the best performance.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 129. Publication date: April 2025.

129:24 Donguk Kim, Minseok Jeon, Doha Hwang, and Hakjoo Oh

54 ...

55 cosl = cos(lp.lam);

56 - k = P->k0 * Q->R2 / (...);

+ const double denom = ...;

+ if(denom == 0.0) {...}

+ k = P->k0 * Q->R2 / denom;

57 xy.x = k * cosc * sin(lp.lam);

58 ...

(a) Fault and fix in proj#4.

{‘P’ : 0.66,
‘Q’ : 0.54,

‘/’ : 0.48, . . . }

{‘cos’ : 0.33,
. . . }

{‘*’ : 0.46,
. . . }

{. . . }

{. . . }

(b) Synthesized crossword from proj#4.

Fig. 8. Fault appeared in proj#4 and the used crossword for the fault localization.

Interestingly, the configuration (0, 0, 0, 0), which considers only the embedding (i.e., the set
of tokens) of the target statement, shows a competitive performance. In the Top-1, for example,
the configuration (0, 0, 0, 0) achieved only 3 less than the best configurations. This shows, that
the statement embedding method is important in fault localization, and our embedding method
was effective. In this work, we adopt a simple and straightforward approach, representing each
statement using the set of tokens it contains. However, employing a more advanced embedding
method could enhance PAFL’s performance. Exploring or developing better embedding techniques
is an interesting future work.

4.4 RQ4: Learned Insight
The synthesized crosswords offer developers valuable insights into the fault patterns within the
project. Note that the crosswords are interpretable, describing suspicious token combinations that
guide developers on where to search for specific bugs. For example, Fig. 8b shows the crossword
synthesized from the proj#4 (causing division by 0) in Fig. 8a. From the crossword, developers can
learn an insight that the combination of the tokens ‘cos’ and ‘P’ in two sequencially connected
statements is suspicious and should be inspected when division by 0 occurs. For example, the
developers can use the learned insight to localize the fault statement occurring division by 0 in the
following recent buggy version of the proj project3:

120 ...

121 cosphi = cos(Q->phi2);

122 - Q->n = (m1 - pj_msfn(sinphi, cosphi, P->es)) / (pj_mlfn(...) - ml1);

+ const double ml2 = pj_mlfn(Q->phi2, sinphi, cosphi, Q->en);

+ if (ml1 == ml2) {...}

+ Q->n = (m1 - pj_msfn(sinphi, cosphi, P->es)) / (ml2 - ml1);

123 if (Q->n == 0) {

124 ...

In the above buggy version, the fault statement includes the token ‘P’ (also includes ‘Q’ and ‘/’
mapped to a high suspicious score in Fig. 8b) and the previous statement includes the token ‘cos’.

5 Related Work
Fault localization has been widely studied in the literature [Kang et al. 2024; Li et al. 2022a,b; Lou
et al. 2020; Rafi et al. 2024; Shao and Yu 2023; Soremekun et al. 2023; Wen et al. 2016; Yang et al.
2024; Zeng et al. 2022]. We discuss those works that are closely related to ours.
3https://github.com/OSGeo/PROJ/commit/586ef0f5f1099fa7aaaa353334e15871ab985127#diff-
51299374e446ed8116e375ba3c05709f5ed917dc5450f4baa5fa29af52008e8fR114

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 129. Publication date: April 2025.

https://github.com/OSGeo/PROJ/commit/586ef0f5f1099fa7aaaa353334e15871ab985127#diff-51299374e446ed8116e375ba3c05709f5ed917dc5450f4baa5fa29af52008e8fR114
https://github.com/OSGeo/PROJ/commit/586ef0f5f1099fa7aaaa353334e15871ab985127#diff-51299374e446ed8116e375ba3c05709f5ed917dc5450f4baa5fa29af52008e8fR114

PAFL: Enhancing Fault Localizers by Leveraging Project-Specific Fault Patterns 129:25

Machine Learning-Based Fault Localization. Machine learning-based techniques have been
widely used for fault localization [Jiang et al. 2023; Li et al. 2019; Sohn and Yoo 2017; Widyasari
et al. 2022; WONG and QI 2009]. For example, Fluccs [Sohn and Yoo 2017] uses a genetic algorithm
to learn a model from the code features and the spectrum data. ABLFL [Pan et al. 2020], a deep
learning-based fault localization technique, uses both static features (e.g., statistical information of
source code) and dynamic features (e.g., program execution information) to learn a fault localization
model. XAI4FL [Widyasari et al. 2022] learns the importance of failing test cases for enhancing SBFL
techniques. HSFL [Wen et al. 2021] is also closely related to ours. HSFL improves SBFL techniques
by identifying and using bug-inducing commits from past versions.

Theoretically, existing machine learning-based approaches can learn a project-specific model if
trained exclusively on past versions of the target project. However, the learning-based approaches
require a large amount of training data (e.g., 190 buggy versions [Sohn and Yoo 2017]) to develop
a model that generalizes well, which significantly limits their applicability to project-aware fault
localization. In our evaluation, we used the projects that have at most 30 buggy versions, which
is significantly less than the required amount of training data for the learning-based approaches.
Also, PAFL is orthogonal to these approaches, as it can be combined with them to further improve
their performance.

Other Fault Localization Techniques. Our approach can also be combined with other flavors
of fault localization techniques. For example, PAFL can be applied to other spectrum-based fault
localization techniques such as Tarantula [Jones et al. 2002], Zoltar [Janssen et al. 2009], and
Jaccard [Abreu et al. 2007]. The techniques use different formulas to compute the suspiciousness
of the program statements. Mutation-based fault localization techniques [Hong et al. 2015; Li and
Zhang 2017; Moon et al. 2014; Papadakis and Le Traon 2015] can also be used in our approach. For
example, MUSEUM [Hong et al. 2015], a multilingual mutation-based fault localization technique,
can be used as a baseline localizer. However, information retrieval-based approaches [Miryeganeh
et al. 2021; Moreno et al. 2014; Saha et al. 2013; Shao and Yu 2023; Wen et al. 2016] may not be
suitable for our approach, as they typically use coarser-grained levels (e.g., file-level) rather than
statement-level fault localization.

6 Conclusion
In this paper, we investigated a project-aware fault localization approach for enhancing existing
fault localizers by enabling them to leverage project-specific fault patterns. Our technique, PAFL, is
based on two novel ideas. First, we designed a simple domain-specific language to describe various
fault patterns. Second, we developed a synthesis algorithm for mining project-specific fault patterns
in terms of crosswords from past versions of the target project. The evaluation results show that
our approach can effectively, robustly, and efficiently boost a variety of baseline fault localizers
including spectrum-based and deep learning-based approaches.

Future Work. In this paper, we implemented and evaluated PAFL primarily for C/C++ programs,
as this work originated from a collaboration with a company whose codebases are written in C++.
However, our approach is fundamentally language-independent and can be readily applied to other
languages, such as Java.

Data-Availability Statement
The artifact of PAFL is available in Zenodo [Kim 2025] and Github4. The artifact includes the
implementation of PAFL, the installation guide for the benchmarks, and the evaluation scripts.

4https://github.com/kupl/PAFL

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 129. Publication date: April 2025.

129:26 Donguk Kim, Minseok Jeon, Doha Hwang, and Hakjoo Oh

Acknowledgments
This work was supported by Samsung Electronics Co., Ltd (Project Num: IO230117-04672-01). This
work was also supported by the National Research Foundation of Korea(NRF) grant funded by
the Korea government(MSIT) (RS-2024-00333885, RS-2021-NR060080), Institute of Information
& communications Technology Planning & Evaluation (IITP) grant funded by the Korea govern-
ment(MSIT) (No.2020-0-01337,(SW STAR LAB) Research on Highly-Practical Automated Software
Repair, 40%, No.RS-2024-00440780, Development of Automated SBOM and VEX Verification Tech-
nologies for Securing Software Supply Chains, 5%), and ICT Creative Consilience Program through
the Institute of Information & Communications Technology Planning & Evaluation(IITP) grant
funded by the Korea government(MSIT) (IITP-2025-RS-2020-II201819, 5%).

References
Rui Abreu, Peter Zoeteweij, and Arjan J.c. Van Gemund. 2006. An Evaluation of Similarity Coefficients for Software Fault

Localization. In 2006 12th Pacific Rim International Symposium on Dependable Computing (PRDC’06). 39–46. doi:10.1109/
PRDC.2006.18

Rui Abreu, Peter Zoeteweij, and Arjan J.C. van Gemund. 2007. On the Accuracy of Spectrum-based Fault Localization. In
Testing: Academic and Industrial Conference Practice and Research Techniques - MUTATION (TAICPART-MUTATION 2007).
89–98. doi:10.1109/TAIC.PART.2007.13

Rui Abreu, Peter Zoeteweij, and Arjan J.C. van Gemund. 2009. Spectrum-Based Multiple Fault Localization. In 2009 IEEE/ACM
International Conference on Automated Software Engineering. 88–99. doi:10.1109/ASE.2009.25

Gabin An, Minhyuk Kwon, Kyunghwa Choi, Jooyong Yi, and Shin Yoo. 2023. BUGSC++: A Highly Usable Real World Defect
Benchmark for C/C++. In Proceedings of the 38th IEEE/ACM International Conference on Automated Software Engineering
(ASE 2023). 2034–2037. doi:10.1109/ASE56229.2023.00208

Tien-Duy B. Le, David Lo, Claire Le Goues, and Lars Grunske. 2016. A learning-to-rank based fault localization approach
using likely invariants. In Proceedings of the 25th International Symposium on Software Testing and Analysis (Saarbrücken,
Germany) (ISSTA 2016). Association for ComputingMachinery, New York, NY, USA, 177–188. doi:10.1145/2931037.2931049

Junming Cao, Shouliang Yang, Wenhui Jiang, Hushuang Zeng, Beijun Shen, and Hao Zhong. 2020. BugPecker: Locating
Faulty Methods with Deep Learning on Revision Graphs. In 2020 35th IEEE/ACM International Conference on Automated
Software Engineering (ASE). 1214–1218.

Wen Chen, Wei Zheng, Desheng Hu, and Jing Wang. 2016. Fault Localization Analysis Based on Deep Neural Network.
Mathematical Problems in Engineering 2016 (2016), 1820454. doi:10.1155/2016/1820454

Luca Gazzola, Daniela Micucci, and Leonardo Mariani. 2019. Automatic Software Repair: A Survey. IEEE Transactions on
Software Engineering 45, 1 (2019), 34–67. doi:10.1109/TSE.2017.2755013

Shin Hong, Byeongcheol Lee, Taehoon Kwak, Yiru Jeon, Bongsuk Ko, Yunho Kim, and Moonzoo Kim. 2015. Mutation-
Based Fault Localization for Real-World Multilingual Programs (T). In 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE). 464–475. doi:10.1109/ASE.2015.14

Tom Janssen, Rui Abreu, and Arjan J.C. van Gemund. 2009. Zoltar: a spectrum-based fault localization tool. In Proceedings
of the 2009 ESEC/FSE Workshop on Software Integration and Evolution @ Runtime (Amsterdam, The Netherlands) (SINTER
’09). Association for Computing Machinery, New York, NY, USA, 23–30. doi:10.1145/1596495.1596502

Jiajun Jiang, Yumeng Wang, Junjie Chen, Delin Lv, and Mengjiao Liu. 2023. Variable-based Fault Localization via Enhanced
Decision Tree. ACM Trans. Softw. Eng. Methodol. 33, 2, Article 41 (dec 2023), 32 pages. doi:10.1145/3624741

J.A. Jones, M.J. Harrold, and J. Stasko. 2002. Visualization of test information to assist fault localization. In Proceedings of the
24th International Conference on Software Engineering. ICSE 2002. 467–477. doi:10.1145/581396.581397

Sungmin Kang, Gabin An, and Shin Yoo. 2024. A Quantitative and Qualitative Evaluation of LLM-Based Explainable Fault
Localization. Proc. ACM Softw. Eng. 1, FSE, Article 64 (jul 2024), 23 pages. doi:10.1145/3660771

Donguk Kim. 2025. PAFL: Enhancing Fault Localizers by Leveraging Project-Specific Fault Patterns (Artifact). doi:10.5281/
zenodo.14920999

Pavneet Singh Kochhar, Xin Xia, David Lo, and Shanping Li. 2016. Practitioners’ expectations on automated fault localization.
In Proceedings of the 25th International Symposium on Software Testing and Analysis (Saarbrücken, Germany) (ISSTA 2016).
Association for Computing Machinery, New York, NY, USA, 165–176. doi:10.1145/2931037.2931051

Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. 2019. DeepFL: integrating multiple fault diagnosis dimensions for deep
fault localization. In Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis
(Beijing, China) (ISSTA 2019). Association for Computing Machinery, New York, NY, USA, 169–180. doi:10.1145/3293882.
3330574

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 129. Publication date: April 2025.

https://doi.org/10.1109/PRDC.2006.18
https://doi.org/10.1109/PRDC.2006.18
https://doi.org/10.1109/TAIC.PART.2007.13
https://doi.org/10.1109/ASE.2009.25
https://doi.org/10.1109/ASE56229.2023.00208
https://doi.org/10.1145/2931037.2931049
https://doi.org/10.1155/2016/1820454
https://doi.org/10.1109/TSE.2017.2755013
https://doi.org/10.1109/ASE.2015.14
https://doi.org/10.1145/1596495.1596502
https://doi.org/10.1145/3624741
https://doi.org/10.1145/581396.581397
https://doi.org/10.1145/3660771
https://doi.org/10.5281/zenodo.14920999
https://doi.org/10.5281/zenodo.14920999
https://doi.org/10.1145/2931037.2931051
https://doi.org/10.1145/3293882.3330574
https://doi.org/10.1145/3293882.3330574

PAFL: Enhancing Fault Localizers by Leveraging Project-Specific Fault Patterns 129:27

Xia Li and Lingming Zhang. 2017. Transforming programs and tests in tandem for fault localization. Proc. ACM Program.
Lang. 1, OOPSLA, Article 92 (oct 2017), 30 pages. doi:10.1145/3133916

Yi Li, Shaohua Wang, and Tien N. Nguyen. 2021. Fault Localization with Code Coverage Representation Learning. In
Proceedings of the 43rd International Conference on Software Engineering (Madrid, Spain) (ICSE ’21). IEEE Press, 661–673.
doi:10.1109/ICSE43902.2021.00067

Yi Li, Shaohua Wang, and Tien N. Nguyen. 2022a. Fault localization to detect co-change fixing locations. In Proceedings of
the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering
(Singapore, Singapore) (ESEC/FSE 2022). Association for Computing Machinery, New York, NY, USA, 659–671. doi:10.
1145/3540250.3549137

Zeyan Li, Nengwen Zhao, Mingjie Li, Xianglin Lu, Lixin Wang, Dongdong Chang, Xiaohui Nie, Li Cao, Wenchi Zhang,
Kaixin Sui, Yanhua Wang, Xu Du, Guoqiang Duan, and Dan Pei. 2022b. Actionable and interpretable fault localization for
recurring failures in online service systems. In Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Singapore, Singapore) (ESEC/FSE 2022). Association for
Computing Machinery, New York, NY, USA, 996–1008. doi:10.1145/3540250.3549092

Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. 2019. TBar: revisiting template-based automated
program repair. In Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis (Beijing,
China) (ISSTA 2019). Association for Computing Machinery, New York, NY, USA, 31–42. doi:10.1145/3293882.3330577

Yiling Lou, Ali Ghanbari, Xia Li, Lingming Zhang, Haotian Zhang, Dan Hao, and Lu Zhang. 2020. Can automated program
repair refine fault localization? a unified debugging approach. In Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis (Virtual Event, USA) (ISSTA 2020). Association for Computing Machinery,
New York, NY, USA, 75–87. doi:10.1145/3395363.3397351

Yiling Lou, Qihao Zhu, Jinhao Dong, Xia Li, Zeyu Sun, Dan Hao, Lu Zhang, and Lingming Zhang. 2021. Boosting coverage-
based fault localization via graph-based representation learning. In Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering (Athens, Greece) (ESEC/FSE
2021). Association for Computing Machinery, New York, NY, USA, 664–676. doi:10.1145/3468264.3468580

Xiangxin Meng, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. 2022. Improving Fault Localization and Program
Repair with Deep Semantic Features and Transferred Knowledge. In 2022 IEEE/ACM 44th International Conference on
Software Engineering (ICSE). 1169–1180. doi:10.1145/3510003.3510147

Nima Miryeganeh, Sepehr Hashtroudi, and Hadi Hemmati. 2021. GloBug: Using global data in Fault Localization. Journal of
Systems and Software 177 (2021), 110961. doi:10.1016/j.jss.2021.110961

Seokhyeon Moon, Yunho Kim, Moonzoo Kim, and Shin Yoo. 2014. Ask the Mutants: Mutating Faulty Programs for Fault
Localization. In 2014 IEEE Seventh International Conference on Software Testing, Verification and Validation. 153–162.
doi:10.1109/ICST.2014.28

Laura Moreno, John Joseph Treadway, Andrian Marcus, and Wuwei Shen. 2014. On the Use of Stack Traces to Improve Text
Retrieval-Based Bug Localization. In 2014 IEEE International Conference on Software Maintenance and Evolution. 151–160.
doi:10.1109/ICSME.2014.37

Yoann Padioleau. 2009. Parsing C/C++ Code without Pre-processing. In Compiler Construction, Oege de Moor and Michael I.
Schwartzbach (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 109–125.

Yuqing Pan, Xi Xiao, Guangwu Hu, Bin Zhang, Qing Li, and Haitao Zheng. 2020. ALBFL: A Novel Neural Ranking Model for
Software Fault Localization via Combining Static andDynamic Features. In 2020 IEEE 19th International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom). 785–792. doi:10.1109/TrustCom50675.2020.00107

Mike Papadakis and Yves Le Traon. 2015. Metallaxis-FL: mutation-based fault localization. Softw. Test. Verif. Reliab. 25, 5–7
(aug 2015), 605–628. doi:10.1002/stvr.1509

Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D. Ernst, Deric Pang, and Benjamin Keller. 2017.
Evaluating and Improving Fault Localization. In 2017 IEEE/ACM 39th International Conference on Software Engineering
(ICSE). 609–620. doi:10.1109/ICSE.2017.62

Md Nakhla Rafi, Dong Jae Kim, An Ran Chen, Tse-Hsun (Peter) Chen, and Shaowei Wang. 2024. Towards Better Graph
Neural Network-Based Fault Localization through Enhanced Code Representation. Proc. ACM Softw. Eng. 1, FSE, Article
86 (jul 2024), 23 pages. doi:10.1145/3660793

Ripon K. Saha, Matthew Lease, Sarfraz Khurshid, and Dewayne E. Perry. 2013. Improving bug localization using structured
information retrieval. In 2013 28th IEEE/ACM International Conference on Automated Software Engineering (ASE). 345–355.
doi:10.1109/ASE.2013.6693093

S. Shao and T. Yu. 2023. Information Retrieval-Based Fault Localization for Concurrent Programs. In 2023 38th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE Computer Society, Los Alamitos, CA, USA,
1467–1479. doi:10.1109/ASE56229.2023.00122

Jeongju Sohn and Shin Yoo. 2017. FLUCCS: using code and change metrics to improve fault localization. In Proceedings of
the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis (Santa Barbara, CA, USA) (ISSTA 2017).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 129. Publication date: April 2025.

https://doi.org/10.1145/3133916
https://doi.org/10.1109/ICSE43902.2021.00067
https://doi.org/10.1145/3540250.3549137
https://doi.org/10.1145/3540250.3549137
https://doi.org/10.1145/3540250.3549092
https://doi.org/10.1145/3293882.3330577
https://doi.org/10.1145/3395363.3397351
https://doi.org/10.1145/3468264.3468580
https://doi.org/10.1145/3510003.3510147
https://doi.org/10.1016/j.jss.2021.110961
https://doi.org/10.1109/ICST.2014.28
https://doi.org/10.1109/ICSME.2014.37
https://doi.org/10.1109/TrustCom50675.2020.00107
https://doi.org/10.1002/stvr.1509
https://doi.org/10.1109/ICSE.2017.62
https://doi.org/10.1145/3660793
https://doi.org/10.1109/ASE.2013.6693093
https://doi.org/10.1109/ASE56229.2023.00122

129:28 Donguk Kim, Minseok Jeon, Doha Hwang, and Hakjoo Oh

Association for Computing Machinery, New York, NY, USA, 273–283. doi:10.1145/3092703.3092717
Ezekiel Soremekun, Lukas Kirschner, Marcel Böhme, and Mike Papadakis. 2023. Evaluating the Impact of Experimental

Assumptions in Automated Fault Localization. In 2023 IEEE/ACM 45th International Conference on Software Engineering
(ICSE). 159–171. doi:10.1109/ICSE48619.2023.00025

Ming Wen, Junjie Chen, Yongqiang Tian, Rongxin Wu, Dan Hao, Shi Han, and Shing-Chi Cheung. 2021. Historical Spectrum
Based Fault Localization. IEEE Transactions on Software Engineering 47, 11 (2021), 2348–2368. doi:10.1109/TSE.2019.2948158

Ming Wen, Rongxin Wu, and Shing-Chi Cheung. 2016. Locus: Locating bugs from software changes. In 2016 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE). 262–273.

Ratnadira Widyasari, Gede Artha Azriadi Prana, Stefanus A. Haryono, Yuan Tian, Hafil Noer Zachiary, and David Lo. 2022.
XAI4FL: Enhancing Spectrum-Based Fault Localization with Explainable Artificial Intelligence. In 2022 IEEE/ACM 30th
International Conference on Program Comprehension (ICPC). 499–510. doi:10.1145/3524610.3527902

Ratnadira Widyasari, Sheng Qin Sim, Camellia Lok, Haodi Qi, Jack Phan, Qijin Tay, Constance Tan, Fiona Wee, Jodie Ethelda
Tan, Yuheng Yieh, Brian Goh, Ferdian Thung, Hong Jin Kang, Thong Hoang, David Lo, and Eng Lieh Ouh. 2020. BugsInPy:
a database of existing bugs in Python programs to enable controlled testing and debugging studies. In Proceedings of the
28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering (Virtual Event, USA) (ESEC/FSE 2020). Association for Computing Machinery, New York, NY, USA, 1556–1560.
doi:10.1145/3368089.3417943

W. Eric Wong, Vidroha Debroy, Yihao Li, and Ruizhi Gao. 2012. Software Fault Localization Using DStar (D*). In 2012 IEEE
Sixth International Conference on Software Security and Reliability. 21–30. doi:10.1109/SERE.2012.12

W. ERIC WONG and YU QI. 2009. BP NEURAL NETWORK-BASED EFFECTIVE FAULT LOCALIZATION. International
Journal of Software Engineering and Knowledge Engineering 19, 04 (2009), 573–597. doi:10.1142/S021819400900426X
arXiv:https://doi.org/10.1142/S021819400900426X

Chunqiu Steven Xia and Lingming Zhang. 2022. Less training, more repairing please: revisiting automated program repair via
zero-shot learning. In Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (<conf-loc>, <city>Singapore</city>, <country>Singapore</country>, </conf-loc>)
(ESEC/FSE 2022). Association for Computing Machinery, New York, NY, USA, 959–971. doi:10.1145/3540250.3549101

Huan Xie, Yan Lei, Meng Yan, Yue Yu, Xin Xia, and Xiaoguang Mao. 2022. A Universal Data Augmentation Approach for
Fault Localization. In 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE). 48–60. doi:10.1145/
3510003.3510136

Xiaoyuan Xie, Fei Ching Kuo, Tsong Yueh Chen, Shin Yoo, andMark Harman. 2013. Provably optimal and human-competitive
results in SBSE for spectrum based fault localisation. In Search Based Software Engineering - 5th International Symposium,
SSBSE 2013, Proceedings (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics)). 224–238. doi:10.1007/978-3-642-39742-4_17 5th International Symposium on
Search-Based Software Engineering, SSBSE 2013 ; Conference date: 24-08-2013 Through 26-08-2013.

Aidan Z. H. Yang, Claire Le Goues, Ruben Martins, and Vincent Hellendoorn. 2024. Large Language Models for Test-Free
Fault Localization. In Proceedings of the IEEE/ACM 46th International Conference on Software Engineering (Lisbon, Portugal)
(ICSE ’24). Association for Computing Machinery, New York, NY, USA, Article 17, 12 pages. doi:10.1145/3597503.3623342

Bo Yang, Yuze He, Huai Liu, Yixin Chen, and Zhi Jin. 2020. A Lightweight Fault Localization Approach based on XGBoost.
In 2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS). 168–179. doi:10.1109/
QRS51102.2020.00033

He Ye and Martin Monperrus. 2024. ITER: Iterative Neural Repair for Multi-Location Patches. In Proceedings of the IEEE/ACM
46th International Conference on Software Engineering (Lisbon, Portugal) (ICSE ’24). Association for Computing Machinery,
New York, NY, USA, Article 10, 13 pages. doi:10.1145/3597503.3623337

Yanbing Yu, James Jones, and Mary Jean Harrold. 2008. An empirical study of the effects of test-suite reduction on fault
localization. In 2008 ACM/IEEE 30th International Conference on Software Engineering. 201–210. doi:10.1145/1368088.
1368116

Muhan Zeng, Yiqian Wu, Zhentao Ye, Yingfei Xiong, Xin Zhang, and Lu Zhang. 2022. Fault localization via efficient
probabilistic modeling of program semantics. In Proceedings of the 44th International Conference on Software Engineering
(Pittsburgh, Pennsylvania) (ICSE ’22). Association for Computing Machinery, New York, NY, USA, 958–969. doi:10.1145/
3510003.3510073

Zhuo Zhang, Yan Lei, Xiaoguang Mao, and Panpan Li. 2019. CNN-FL: An Effective Approach for Localizing Faults
using Convolutional Neural Networks. In 2019 IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering (SANER). 445–455. doi:10.1109/SANER.2019.8668002

Zhuo Zhang, Yan Lei, Xiaoguang Mao, Meng Yan, Ling Xu, and Xiaohong Zhang. 2021. A study of effectiveness of deep
learning in locating real faults. Information and Software Technology 131 (2021), 106486. doi:10.1016/j.infsof.2020.106486

Received 2024-10-16; accepted 2025-02-18

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 129. Publication date: April 2025.

https://doi.org/10.1145/3092703.3092717
https://doi.org/10.1109/ICSE48619.2023.00025
https://doi.org/10.1109/TSE.2019.2948158
https://doi.org/10.1145/3524610.3527902
https://doi.org/10.1145/3368089.3417943
https://doi.org/10.1109/SERE.2012.12
https://doi.org/10.1142/S021819400900426X
https://arxiv.org/abs/https://doi.org/10.1142/S021819400900426X
https://doi.org/10.1145/3540250.3549101
https://doi.org/10.1145/3510003.3510136
https://doi.org/10.1145/3510003.3510136
https://doi.org/10.1007/978-3-642-39742-4_17
https://doi.org/10.1145/3597503.3623342
https://doi.org/10.1109/QRS51102.2020.00033
https://doi.org/10.1109/QRS51102.2020.00033
https://doi.org/10.1145/3597503.3623337
https://doi.org/10.1145/1368088.1368116
https://doi.org/10.1145/1368088.1368116
https://doi.org/10.1145/3510003.3510073
https://doi.org/10.1145/3510003.3510073
https://doi.org/10.1109/SANER.2019.8668002
https://doi.org/10.1016/j.infsof.2020.106486

	Abstract
	1 Introduction
	2 Overview
	3 Project-Aware Fault Localization
	3.1 Problem Definition
	3.2 Crosswords
	3.3 Project-Aware Fault Localization
	3.4 Mining Fault Patterns
	3.5 Running Example of Refining a Crossword

	4 Evaluation
	4.1 RQ1: Performance of PAFL
	4.2 RQ2: Comparison with State-of-the-Art
	4.3 RQ3: Effect of Language Extension
	4.4 RQ4: Learned Insight

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

