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Learning Graph-Based Heuristics for Pointer Analysis

without Handcrafting Application-Specific Features

MINSEOK JEON, MYUNGHO LEE, and HAKJOO OH∗, Korea University, Republic of Korea

We present Graphick, a new technique for automatically learning graph-based heuristics for pointer analysis.

Striking a balance between precision and scalability of pointer analysis requires designing good analysis

heuristics. For example, because applying context sensitivity to all methods in a real-world program is

impractical, pointer analysis typically uses a heuristic to employ context sensitivity only when it is necessary.

Past research has shown that exploiting the program’s graph structure is a promising way of developing

cost-effective analysis heuristics, promoting the recent trend of łgraph-based heuristicsž that work on the

graph representations of programs obtained from a pre-analysis. Although promising, manually developing

such heuristics remains challenging, requiring a great deal of expertise and laborious effort. In this paper, we

aim to reduce this burden by learning graph-based heuristics automatically, in particular without hand-crafted

application-specific features. To do so, we present a feature language to describe graph structures and an

algorithm for learning analysis heuristics within the language. We implemented Graphick on top of Doop and

used it to learn graph-based heuristics for object sensitivity and heap abstraction. The evaluation results

show that our approach is general and can generate high-quality heuristics. For both instances, the learned

heuristics are as competitive as the existing state-of-the-art heuristics designed manually by analysis experts.
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1 INTRODUCTION

Pointer analysis is a fundamental program analysis technique that serves as a key component of
various software engineering tools. The goal of pointer analysis is to statically and conservatively
estimate heap objects that pointer variables may refer to at runtime. The pointer information is
essential for virtually all kinds of program analysis tools, including bug detectors [Blackshear
et al. 2015; Livshits and Lam 2003; Naik et al. 2006, 2009; Sui et al. 2014], security analyzers [Arzt
et al. 2014; Avots et al. 2005; Grech and Smaragdakis 2017; Tripp et al. 2009; Yan et al. 2017],
program verifiers [Fink et al. 2008], symbolic executors [Kapus and Cadar 2019], and program
repair tools [Gao et al. 2015; Hong et al. 2020; Lee et al. 2018; Xu et al. 2019]. The success of
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these tools depends eventually on the precision and scalability of the underlying pointer analysis
algorithm.

Developing a fast and precise pointer analysis requires coming up with good analysis heuristics.
For example, context sensitivity is critical for accurately analyzing object-oriented programs as it
distinguishes method’s local variables and objects in different calling contexts [Smaragdakis and
Balatsouras 2015]. In reality, however, it is too expensive to apply deep context sensitivity (e.g.
2-object-sensitivity) to all methods in a nontrivial program. Therefore practical pointer analysis
applies context sensitivity selectively using a context abstraction heuristic that determines the
amount of context sensitivity that each method should receive [Jeong et al. 2017; Li et al. 2018a; Lu
and Xue 2019; Smaragdakis et al. 2014]. Similarly, the performance of pointer analysis depends
heavily on how heap objects are represented [Kanvar and Khedker 2016]. Pointer analysis usually
employs allocation-site-based heap abstraction, which models heap objects with their allocation
sites. However, because uniformly applying it to all heap objects is costly, a heap abstraction
heuristic can be used to apply it selectively and otherwise use a less precise scheme such as
type-based abstraction [Tan et al. 2017].

Trend: Graph-based Heuristics. A recent trend in state-of-the-art pointer analyses is use of
graph-based analysis heuristics [Li et al. 2018a,b; Lu and Xue 2019; Tan et al. 2016, 2017]. These
graph-based heuristics commonly work in the following two steps: (1) they first use a cheap pre-
analysis to construct a graph representation of the input program and (2) they reason about the
graph structure to produce a program-specific policy for the main analysis.

For example, Tan et al. [2016] presented Bean, which first runs a context-insensitive pre-analysis
to generate the object allocation graph (OAG) and infers from it a policy for improving the precision
ofk-object-sensitive analysis. Li et al. [2018b] proposed Scaler, which also uses a context-insensitive
pre-analysis to derive the object allocation graph and analyzes its structure to identify method
calls that are likely to blow up the analysis cost during the 2-object-sensitive analysis. Li et al.
[2018a] presented Zipper, another graph-based heuristic for context-sensitive analysis. Zipper uses
a pre-analysis to generate a so-called precision flow graph (PFG) and identifies precision-critical
method calls that may lose precision significantly if context insensitivity is used. Lu and Xue [2019]
presented a graph-based heuristic, called Eagle, that uses a CFL-reachability-based pre-analysis to
find out variables and objects that need context sensitivity in the main analysis. Tan et al. [2017]
developed Mahjong, a graph-based heap abstraction heuristic that first runs a cheap pre-analysis
to derive a field points-to graph (FPG) and decides when to merge and differentiate heap objects
based on the structure of the points-to graph.

This Work. In this paper, we aim to advance this line of research by automating the process of
creating graph-based analysis heuristics for pointer analysis. While all of the existing graph-based
heuristics have been designed manually by analysis experts, our technique generates such heuristics
automatically from a given graph without any human effort, significantly increasing applicability
and accessibility of the emerging and promising approach in pointer analysis.

We achieve this goal by developing (1) a feature language for describing graph structures and (2)
an algorithm for learning analysis heuristics in terms of the sentences of the language. We first
present a language for describing structural features of nodes in a graph. This feature description
language is simple and general, allowing it to be reused for various analysis instances (e.g. object
sensitivity and heap abstraction). Second, we present a learning algorithm that takes training
programs (and their graph representations) and produces graph-based heuristics by automatically
discovering features appropriate for the given analysis task. Compared to prior data-driven static
analysis techniques [He et al. 2020; Jeon et al. 2018; Jeong et al. 2017; Singh et al. 2018], a salient
characteristic of our technique is that it does not require pre-designed, application-specific features;
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1 class A{} class B{}

2 class C{

3 Object data;

4 void C(){

5 data = new Object;//O

6 }

7 void set(Object e){

8 data = e;

9 }

10 Object get(){

11 return data;

12 }

13 }

14 class F{

15 void foo(){

16 C c1 = new C();//C1

17 C c2 = new C();//C2

18

19 c1.set(new A());//A1

20 c2.set(new B());//B1

21 A a = (A)c1.get();

22 //query1

23 B b = (B)c2.get();

24 //query2

25 }

26 }

27 }

28

29 main(){

30 F f1 = new F(); //F1

31 f1.foo();

32 F f2 = new F(); //F2

33 f2.foo();

34 }

(a) Example code

F1 F2

B1A1 C1 C2

O

(b) Object allocation graph

[0,∞],[2,∞]

[0,∞],[0,∞]

[2,∞],[0,∞]

(c) Object-sensitivity heuristic

Fig. 1. Example to illustrate our graph-based object-sensitivity heuristic

instead, it uses a feature language to generate a proper set of features during the learning process.
By contrast, existing learning-based techniques for static analysis need a different set of hand-tuned
features for each analysis task.
The evaluation results show that our technique is effective and general; it can automatically

produce competitive heuristics for two different analysis instances. We implemented our approach
on top of the Doop pointer analysis framework for Java [Bravenboer and Smaragdakis 2009].
We used our approach to produce a object-sensitivity heuristic from the object allocation graph
on which the state-of-the-art object-sensitivity heuristic Scaler [Li et al. 2018b] was developed.
Additionally, we learned a heap abstraction heuristic from the field points-to graph, which is used
in the state-of-the-art heap abstraction heuristicMahjong [Tan et al. 2017]. For both instances,
our approach successfully generated high-quality heuristics that are as competitive as Scaler and
Mahjong in terms of the precision and scalability of the main analysis. In particular, the generated
heuristic by our framework successfully analyzes large programs which the state-of-the-art heap
abstraction heuristic, Mahjong, cannot handle within a time budget.

Contributions. In summary, this paper makes the following contributions:

• We present Graphick, a new technique for automatically learning graph-based heuristics
for pointer analysis. Key technical contributions include a feature description language and
a learning algorithm, which allow our approach to be generally used for different analysis
instances without manually designing application-specific features.
• We demonstrate the effectiveness and generality of our technique in comparison with state-
of-the-art heuristics for object sensitivity and heap abstraction.
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2 OVERVIEW

We illustrate how our graph-based heuristic looks like and works with an example.

Example Program. Figure 1a is an example program with two queries checking the down-
casting safety. This example has a main method that calls the method foo with two different
receiver objects F1 and F2. Class C provides getter and setter methods to manipulate its field data.
Class F has a method foo which allocates two objects C1 and C2 to variables c1 and c2, respectively.
These variables call the set method with newly allocated objects A1 and B1. There are two queries
query1 and query2 asking the down-casting safety at lines 21 and 23. The safety holds because
the get method returns objects A1 and B1 at lines 21 and 23, respectively.

Goal: Selective Object Sensitivity. Our goal is to analyze the program cost-effectively by apply-
ing context sensitivity only when it is necessary. To prove the queries, we need an object-sensitive
analysis that differentiates the methods called under receiver objects C1 and C2. Without object
sensitivity, the analysis merges the methods get and set called on receiver objects C1 and C2;
eventually, the analysis misjudges that the get method can return both A and B at lines 21 and 23,
and fails to prove the down-casting safety. The context-sensitive analysis, however, is not necessary
for the method foo called from other objects F1 and F2 because foo is not related to the queries. If
we apply context sensitivity to this method, it only increases the analysis cost without any precision
gain. Thus, our heuristic aims to infer the following policy for the main analysis:

Apply object sensitivity only to method calls whose receiver objects are C1 or C2.

Graph-based Heuristics. To generate such a policy, graph-based heuristics first run a cheap
pre-analysis (e.g. context-insensitive analysis) to obtain a graph representation of the program.
For object-sensitivity heuristics, the object allocation graph (OAG) has been considered as a good
program representation [Li et al. 2018b; Tan et al. 2016]. Nodes in an OAG are heap objects
(represented by allocation sites) and edges represent the connections between objects and their
allocators. Figure 1b shows the OAG of the example program. In Figure 1b, for instance, two objects
F1 and F2 have edges toward the objects A1, B1, C1, and C2 because these four objects are allocated
inside the method foo that is called on the receiver objects F1 and F2. Given the OAG, the goal
of graph-based heuristics is to choose a set of nodes in the graph. Ideally, a good heuristic would
accurately identify the set {C1, C2} that needs object sensitivity during the main analysis.

How Our Heuristic Works. Our heuristic consists of a set of features, where a feature describes
a set of nodes in the given graph. A feature is of the form (prev , ([a,b], [c,d]), succ), where [a,b]
and [c,d] are intervals, and prev and succ are sequences of pairs of intervals. A node n in a graph
is described by the feature iff the number of incoming edges of n is between a and b, the number of
outgoing edges is between c and d , and the node has a sequence of predecessors satisfying prev,
and the node has a sequence of successors satisfying succ.

For example, Figure 1c shows a heuristic comprising of a single feature (prev , ([0,∞], [0,∞]), succ
), where prev and succ are single pair of intervals (i.e. prev = ([0,∞], [2,∞]) and succ = ([2,∞],
[0,∞])). It describes nodes that have at least 0 incoming and 0 outgoing edges, have a predecessor
with at least 0 incoming and 2 outgoing edges, and have a successor with at least 2 incoming and 0
outgoing edges. In Figure 1b, C1 and C2 are the only nodes that satisfy these conditions because
they have a successor (i.e. O) with two incoming edges and a predecessor (F1 or F2) with four
outgoing edges. From a set of training programs, our learning algorithm in Section 4.4 can generate
such features automatically.
Given a graph and a set of features, our heuristic finds out all the nodes that satisfy one of the

features. This information is used by the main analysis to perform a selective object-sensitive
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analysis; the methods called under receiver objects C1 and C2 are analyzed with 1-object-sensitivity
while the others are analyzed context insensitively.

Note that the performance of the main analysis heavily depends on the features in learned
heuristics. For example, assume that a heuristic contains the following feature which takes off a
predecessor of a target node from the feature in Figure 1c:

[0,∞],[0,∞] [2,∞],[0,∞]
.

Unlike the feature in Figure 1c, which only C1 and C2 satisfy, four nodes C1, C2, F1, and F2 are
implied by the above feature. Because the feature still includes precision-critical nodes, C1 and C2,
the heuristic is able to prove the queries; however, it pays additional analysis costs as the set of nodes
include F1 and F2 which are not related to the queries. As such, inappropriately learned heuristics
can degrade the performance in costs and even the precision of the main analysis. Therefore, the
goal of our learning algorithm is to find out qualified heuristics that are able to maintain as many
precision-critical nodes as possible while excluding others that are not.

3 PRELIMINARIES

In this section, we define the baseline pointer analysis for Java-like languages (Section 3.1) and
explain how to parameterize its context sensitivity (Section 3.2) and heap abstraction (Section 3.2).

3.1 Baseline Pointer Analysis

We consider the standard k-object-sensitive pointer analysis with allocation-site-based heap ab-
straction [Milanova et al. 2002; Smaragdakis et al. 2011].

Notation. Given a program, let V be the set of program variables, H the set of allocation sites,
M the set of methods, F the set of field names, and T the set of class types in the program. We
write C for the set of calling contexts and HC for the set of heap contexts. In object sensitivity, C
and HC are defined to be sequences of allocation sites, i.e., C = HC = H∗. Let typeof : H→ T be
a function that maps allocation sites to the types of the allocated objects. Given a methodm, we
write thism , paramm , returnm for the this variable, formal parameter, and return variable of the
methodm, respectively. Given a sequence s = ⟨a1,a2, . . . ,an⟩ and an element a′, we write s ++ a′

for ⟨a1,a2, . . . ,an ,a
′⟩ and write ⌈⟨a1,a2, . . . ,an⟩⌉k for ⟨an−k+1, . . . ,an⟩.

Program. We consider five types of instructions: heap allocation, move, field load, field store,
and method call. We assume that instructions are represented by the following relations:

(var , heap, inMeth ) ∈ Alloc ⊆ V × H ×M

(to, from, inMeth ) ∈ Move ⊆ V × V ×M

(to, from,fld , inMeth ) ∈ FldLoad ⊆ V × V × F ×M

(to,fld , from, inMeth ) ∈ FldStore ⊆ V × F × V ×M

(return, base, callee, arg , caller ) ∈ Call ⊆ V × V ×M × V ×M

The set Alloc represents all heap-allocating instructions in a given program. For example, when a
heap cell is allocated and stored in a variable v at an allocation-site h (i.e. v = new C , where the
instruction label is h andC denotes a class type), we represent the instruction by (v,h,m) wherem
is the method containing the instruction. Similarly, whenm is the enclosing method, move (x = y),
field store (x . f = y), field load (x = y. f ) instructions are represented by (x ,y,m), (x , f ,y,m), and
(x ,y, f ,m), respectively. Call represents method calls in the program. When a methodmcaller con-
tains a call instruction x = y.mcallee (arg ), Call includes (x ,y,mcallee , arg ,mcaller ). For presentation
simplicity, we assume that methods take a single argument.
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(var , heap, inMeth ) ∈ Alloc ctx ∈ MethodCtx(inMeth ) hctx = ⌈ctx ⌉maxH

(heap, hctx ) ∈ VarPtsTo(var , ctx )

(to, from, inMeth ) ∈ Move ctx ∈ MethodCtx(inMeth )

VarPtsTo(from, ctx ) ⊆ VarPtsTo(to, ctx )

(to, from,fld , inMeth ) ∈ FldLoad ctx ∈ MethodCtx(inMeth )

(heap, hctx ) ∈ VarPtsTo(from, ctx )

FldPtsTo(heap, hctx ,fld ) ⊆ VarPtsTo(to, ctx )

(to,fld , from, inMeth ) ∈ FldStore ctx ∈ MethodCtx(inMeth )

(heap, hctx ) ∈ VarPtsTo(to, ctx )

VarPtsTo(from, ctx ) ⊆ FldPtsTo(heap, hctx ,fld )

(return, base, callee, arg , caller ) ∈ Call ctx ∈ MethodCtx(caller )

(heap, hctx ) ∈ VarPtsTo(base, ctx ) ctx ′ = ⌈hctx ++ heap⌉maxK

ctx ′ ∈ MethodCtx(callee ) VarPtsTo(arg , ctx ) ⊆ VarPtsTo(paramcallee , ctx
′)

(heap, hctx ) ∈ VarPtsTo(thiscallee , ctx
′)

VarPtsTo(returncallee , ctx
′) ⊆ VarPtsTo(return, ctx )

Fig. 2. Pointer analysis rules with object sensitivity and allocation-site-based heap abstraction

Analysis Output. The goal of the analysis is to compute the following information:

• VarPtsTo : V × C→ ℘(H × HC)
• FldPtsTo : H × HC × F→ ℘(H × HC)
• MethodCtx : M→ ℘(C)

The points-to information is classified into VarPtsTo and FldPtsTo. VarPtsTo maps each pointer
variable qualified with a calling context to a set of abstract heaps, where an abstract heap consists
of an allocation site and a heap context. FldPtsTomaps each object’s field locations to abstract heaps.
MethodCtx maps each method to the set of its reachable contexts.

In recent pointer analyses, graph representations of the analysis results have been widely used
and our technique also leverages them. Notable examples include object allocation graph (OAG) [Tan
et al. 2016] and field points-to graph (FPG) [Tan et al. 2017]. The object allocation graph is a directed
graph, GOAG = (NOAG, →֒OAG), where nodes are allocation sites in the program (i.e. NOAG = H) and
edges ( →֒OAG) ⊆ H × H describe the object allocation relation defined as follows:

h →֒OAG h′ ⇐⇒ ∃m ∈ M. (h, _) ∈ VarPtsTo(thism , _) and (_,h′,m) ∈ Alloc.

In words, we have h →֒OAG h′ if h is a receiver object of methodm, i.e. (h, _) ∈ VarPtsTo(thism , _),
and m allocates h′, i.e. (_,h,m) ∈ Alloc. Intuitively, object allocation graph is the łcall graphž
in object sensitivity, which provides information about how each context is constructed in k-
object-sensitive analysis [Li et al. 2018b]. The field points-to graphGFPG = (NFPG, →֒FPG) is simply a
context-insensitive representation of the FldPtsTo relation.We defineNFPG = H andh →֒FPG h′ ⇐⇒

(h′, _) ∈ FldPtsTo(h, _, _).

Analysis Rules. Figure 2 shows the rules for computing the analysis results. Let maxK and
maxH be the maximum lengths to maintain for call and heap contexts, respectively. Suppose that
(var , heap, inMeth ) is inAlloc, ctx is a reachable context of inMeth (i.e. ctx ∈ MethodCtx(inMeth )),
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(return, base, callee, arg, caller ) ∈ Call
ctx ∈ MethodCtx(caller ) (heap, hctx ) ∈ VarPtsTo(base, ctx )

ctx ′ =





⌈hctx ++ heap⌉maxK if ContextAbstraction (heap) = maxK

⌈hctx ++ heap⌉maxK−1 if ContextAbstraction (heap) = maxK − 1
. . .

⌈hctx ++ heap⌉0 if ContextAbstraction (heap) = 0

ctx ′ ∈ MethodCtx(callee ) VarPtsTo(arg , ctx ) ⊆ VarPtsTo(paramcallee , ctx
′)

(heap, hctx ) ∈ VarPtsTo(thiscallee , ctx
′) VarPtsTo(returncallee , ctx

′) ⊆ VarPtsTo(return, ctx )

Fig. 3. Parametric object sensitivity

(var , heap, inMeth ) ∈ Alloc ctx ∈ MethodCtx(inMeth )

hctx = ⌈ctx ⌉maxH heap ′ =

{

heap if HeapAbstraction (heap) = ‘alloc’
typeof (heap) if HeapAbstraction (heap) = ‘type’

(heap ′, hctx ) ∈ VarPtsTo(var , ctx )

Fig. 4. Parametric heap abstraction

and hctx is a heap context obtained by truncating the last maxH elements of ctx (i.e. hctx =
⌈ctx ⌉maxH ). Then, VarPtsTo(var , ctx ) should include (heap, ctx ). Analysis rules forMove, FldLoad,
and FldStore are defined similarly. The rule for Call describes the standard k-object-sensitive analy-
sis [Milanova et al. 2005; Smaragdakis et al. 2011]. Suppose a method is called on a base variable
base with a context ctx , (heap, hctx ) is a receiver object, and ctx ′ is a new calling context. The
context ctx ′ is obtained by appending heap to the heap context hctx of the receiver object (i.e.
hctx ++ heap) and truncating the result (i.e. ⌈hctx ++ heap⌉maxK ). Then, ctx ′ becomes a reachable
context of the callee (i.e. ctx ′ ∈ MethodCtx(callee )), the points-to set of the formal parameter of
the callee (denoted paramcallee ) is updated with that of the actual parameter, the this variable of
the callee points-to the receiver object, and the points-to set of the return variable of the callee
(denoted returncallee ) is transferred to the return variable of the caller.

3.2 Parameterization

Next, we parameterize the baseline pointer analysis.

Parametric Object Sensitivity. The analysis in Figure 2 uses the same maxK value for every
method call. The parametric object-sensitive analysis generalizes it to be able to assign different
call depths for different method calls. To do so, the parameterized analysis uses the rule in Figure 3
instead of the last rule in Figure 2. In Figure 3, we use the function ContextAbstraction : H →
[0,maxK ], which assigns a context depth between 0 and maxK to each method call. When a
method is called on a receiver object heap, ContextAbstraction produces an appropriate context
depth for it. In Section 4, we present a technique for automatically learning a heuristic that produces
the ContextAbstraction information for a given program.

Parametric Heap Abstraction. The analysis in Figure 2 uses allocation-based heap abstraction
for every heap object. We can generalize it to support selective use of allocation-site- and type-based
heap abstractions. We first need to generalize the analysis results as follows:

• VarPtsTo : V × C→ ℘((H + T) × HC)
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• FldPtsTo : (H + T) × HC × F→ ℘((H + T) × HC)
• MethodCtx : M→ ℘(C)

VarPtsTo maps each variable with a context to abstract heaps, where an abstract heap is now
either allocation site (H) or class type (T) with their heap context. FldPtsTo is also extended in a
similar way to support type-based abstraction. We replace the rule for Alloc in Figure 2 by the
parameterized rule in Figure 4. The new rule uses the function HeapAbstraction that takes an
allocation site (heap) and determines whether we use allocation-site-based abstraction (‘alloc’) or
type-based abstraction (‘type’). When HeapAbstraction returns ‘type’, we use the class type of the
allocated object (i.e. typeof (heap)) instead of the allocation site. Otherwise, the analysis performs
the conventional allocation-site-based heap abstraction. Our technique in Section 4 can be also
used for learning a heuristic that produces appropriate HeapAbstraction for each input program.

4 GRAPHICK

In this section, we present our approach for automatically learning graph-based analysis heuristics.
In Section 4.1, we define static analyses with k-limited abstractions. Section 4.2 presents a feature
description language for directed graphs, which is important for the generality and effectiveness of
our approach. In Section 4.3, we define a parameterized abstraction heuristic based on the feature
language. Section 4.4 presents our algorithm for learning parameters of the heuristic.

4.1 Static Analyses with K-Limited Abstractions

Let us first model a static analysis with k-limited abstractions. Given a program P to analyze, let CP
be a finite set of program components in P . For example, CP may denote the set of methods [Jeong
et al. 2017] or the set of allocation sites [Tan et al. 2017] in P . We define AP to be the set of
abstractions over CP as follows:

a ∈ AP = CP → {0, 1, . . . ,k }.

An abstraction a ∈ AP maps program components to natural numbers between 0 and k . For
example, in a partially context-sensitive analysis, it assigns one of 0, 1, . . . ,k to each method call,
indicating the amount of context sensitivity that each method is allowed to receive during the
analysis. Abstractions are partially ordered as follows:

a1 ⊑ a2 ⇐⇒ ∀c ∈ CP . a1 (c ) ≤ a2 (c ).

We write k and 0 for the most precise and least precise abstractions, respectively:

k = λc ∈ CP . k, 0 = λc ∈ CP . 0

We assume that a set QP of assertions is given together with the program P . For instance, QP
may denote the set of all type casts in the program. The goal of static analysis is to prove that
assertions in QP do not fail at runtime. We model a static analyzer as a function that takes as input
an abstraction and produces a set of proved queries and, as a by-product, a directed graph over
program components:

FP : AP → ℘(QP ) × GP

where GP denotes the set of possible graphs. A graph G = (N , →֒) ∈ GP consists of nodes N = CP
and edges ( →֒) ⊆ CP ×CP . For example,G is the object allocation graph [Li et al. 2018b] or the field
points-to graph [Tan et al. 2017] depending on the purpose of the analysis. We use two projection
functions, proved and graph, which are used for obtaining the proven queries and the graph,
respectively, from the analysis output.
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In this paper, we generally assume the analysis FP is monotone with respect to the abstractions
in the sense that more refined abstractions imply higher analysis precision:

a ⊑ a′ =⇒ proved(FP (a)) ⊆ proved(FP (a
′)). (1)

Many static analysis problems are monotone [Jeong et al. 2017; Li et al. 2018a; Liang and Naik
2011; Liang et al. 2011; Tan et al. 2017; Zhang et al. 2014] and therefore our approach is directly
applicable to them. For non-monotone analyses (e.g. interval analysis with widening [Cha et al.
2016]), our approach is still applicable in practice but it does not guarantee its theoretical property
(Theorem 4.2).

4.2 Feature Description Language

Our approach uses a simple and general language for describing properties of nodes in a graph.

Observation. Our feature language has been inspired from existing graph-based heuristics.
Existing works [Li et al. 2018a,b; Tan et al. 2016] have demonstrated that the number of incoming
and outgoing edges of nodes in graphs play key roles in designing analysis heuristics. For example,
Li et al. [2018a] identify precision-critical method calls by figuring out the nodes with multiple
incoming edges in precision flow graph (PFG). Besides the PFG, the number of incoming edges in
object allocation graph (OAG) also helps to design effective analysis heuristics, which is used by
both Tan et al. [2016] and Li et al. [2018b]. The conventional 2-object-sensitive analysis produces
only one heap context for objects when they have only one incoming edge in OAG. Tan et al. [2016],
however, design an analysis heuristic which assigns alternative multiple heap contexts to these
objects for improving precision. When an object has lots of incoming edges, multiple contexts
are applied to the methods called from the object in 2-object-sensitive analysis. These methods
are critical for scalability in pointer analysis, and Li et al. [2018b] identify these methods to apply
alternatively coarse yet cheap contexts to improve the performance in scalability. Based on these
observations, we designed a feature language that can express various combinations of the number
of edges around nodes, successors, and predecessors.

Formal Definition. LetG = (N , →֒) be a directed graph over program components, i.e., N = CP
and ( →֒) ⊆ CP × CP . Let InG (n) and OutG (n) be the numbers of incoming and outgoing edges,
respectively, of node n in graph G:

InG (n) = |{p ∈ N | p →֒ n}|, OutG (n) = |{s ∈ N | n →֒ s}|.

A feature in our language denotes a set of nodes. We define a feature f to be a triple:

f ∈ Feature = ENode
∗
× ENode × ENode

∗

where ENode means abstract nodes:

n̂, p̂, ŝ ∈ ENode = Itv × Itv

Itv = {[a,b] | a ∈ N,b ∈ N ∪ {∞}}

An abstract node ([a,b], [c,d]) ∈ ENode is a pair of intervals and denotes a set of nodes as follows:

γG (([a,b], [c,d])) = {n ∈ N | a ≤ InG (n) ≤ b, c ≤ OutG (n) ≤ d }.

We extend the definition to a sequence of abstract nodes (ENode
∗
). The empty sequence ϵ denotes

the empty set of nodes. A non-empty sequence ⟨(itv0, itv
′
0
), (itv1, itv

′
1
), . . . , (itvm , itv

′
m )⟩ of pairs

of intervals denotes sequences of nodes as follows:

γG (⟨(itv0, itv
′
0
), (itv1, itv

′
1
), · · · , (itvm , itv

′
m )⟩) =

{⟨n0,n1, . . . ,nm⟩ ∈ N
∗ | n0 →֒ n1 →֒ · · · →֒ nm ,∀i ∈ [0,m]. ni ∈ γG ((itv i , itv

′
i ))}.
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Finally, a feature (⟨p̂0, p̂1, . . . , p̂q⟩, n̂, ⟨ŝ0, ŝ1, . . . , ŝr ⟩) ∈ Feature denotes a set of nodes in γG (n̂)

whose predecessors and successors are described as ⟨p̂0, p̂1, . . . , p̂q⟩ and ⟨ŝ0, ŝ1, . . . , ŝr ⟩, respectively:

γG (⟨p̂0, p̂1, . . . , p̂q⟩, n̂, ⟨ŝ0, ŝ1, . . . , ŝr ⟩) = {n ∈ γG (n̂) | ∃p0,p1, . . . ,pq , s0, s1, . . . , sr ∈ N .

⟨p0,p1, . . . ,pq⟩ ∈ γG (⟨p̂1, p̂2, . . . , p̂q⟩),pq →֒ n →֒ s0, ⟨s0, s1, . . . , sr ⟩ ∈ γG (⟨ŝ1, ŝ2, . . . , ŝr ⟩).}

For example, feature (ϵ, ([0, 3], [5,∞]), ⟨([0, 2], [0, 0])⟩) describes the set of nodes that have 1)
three or less incoming edges and five or more outgoing edges, and 2) a successor node with two or
less incoming edges and no outgoing edges. For another example, the following feature

(⟨([0, 0], [0, 5]), ([1, 2], [3,∞])⟩, ([0, 3], [100,∞), ⟨([1, 1], [2, 2])⟩)

describes a node n iff 1) n has three or less incoming edges and 100 or more outgoing edges, 2) n
has a predecessor p with one or two incoming edges and three or more outgoing edges, 3) p also
has a predecessor with no incoming edge and five or less outgoing edges, and 4) n has a successor s
with a single incoming edge and two outgoing edges.

4.3 Parameterized Abstraction Heuristic

In our approach, abstraction heuristics work on a graph over program components. That is, a
heuristicH is a function that takes a graph G for program P and produces an abstraction of P :

H (G ) : CP → {0, 1, . . . ,k }.

The graph G is typically obtained by running an imprecise but fast pre-analysis [Li et al. 2018b; Lu
and Xue 2019; Tan et al. 2016, 2017]. For example, it can be obtained by running the analysis FP
with the least precise abstraction:

G = graph(FP (0)).

We define a template of such heuristics whose behavior is controlled by k parameters Π =
⟨F1,F2, . . . ,Fk ⟩, where each parameter Fi ⊆ Feature is a set of features in our language. We define
the parameterized heuristicHΠ as follows:

HΠ (G ) = λc ∈ CP .





k if c ∈ γG (Fk )
k − 1 if c ∈ γG (Fk−1) ∧ c < γG (Fk )

· · ·

k − i if c ∈ γG (Fk−i ) ∧ c <
⋃

k≥j>k−i γG (Fj )

· · ·

1 if c ∈ γG (F1) ∧ c <
⋃

k≥j>1 γG (Fj )

0 otherwise

whereγG (Fi ) =
⋃

f ∈Fi γG ( f ). Basically, the heuristicHΠ assigns an abstraction degree j to program

component c if c is implied by the jth parameter Fj . If c is implied by multiple parameters, the
heuristic assigns the highest abstraction degree among them. For example, when c ∈ F1 and c ∈ F2,
we defineHΠ (G ) (c ) = 2.

4.4 Learning Algorithm

Now we present an algorithm for learning parameters Π = ⟨F1,F2, . . . ,Fk ⟩ from a set P =
{P1, P2, . . . , Pn } of training programs.

Overall Process. Algorithm 1 describes the overall learning process. The algorithm takes train-
ing programs P, static analyzer F , and the maximum abstraction degree k . As output, it produces k
parameters Π = ⟨F1,F2, . . . ,Fk ⟩. Initially, parameters Π are set to empty sets ⟨∅, ∅, . . . , ∅⟩ (line 2).
At line 3, the algorithm computes a mapAP from programs in P to their ideal abstractions. For each
training program Pi ∈ P, AP (Pi ) denotes the desired abstraction for Pi that we want our heuristic
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Algorithm 1 Overall learning algorithm

Input: Training programs P, static analyzer F , maximum abstraction degree k
Output: Parameters ⟨F1,F2, . . . ,Fk ⟩
1: procedure Learn(P, F ,k)
2: ⟨F1,F2, . . . ,Fk ⟩ ← ⟨∅, ∅, . . . , ∅⟩

3: AP ← λP ∈ P.LearnMinimalAbstraction(P , F ,k ) ▷ minimal abstractions
4: GP ← λP ∈ P.graph(FP (0)) ▷ graphs from pre-analysis
5: for i = 1 to k do

6: Fi ← LearnSetOfFeatures(i,AP,GP)

7: end for

8: return ⟨F1,F2, . . . ,Fk ⟩

9: end procedure

Algorithm 2 Learning minimal abstraction

Input: Program P , static analyzer F , maximum abstraction degree k
Output: A minimal abstraction for P
1: procedure LearnMinimalAbstraction(P , F ,k)
2: C ← CP
3: a← λc .k

4: for i = k to 1 do
5: C ′ ← C

6: while C ′ , ∅ do

7: c ′ ← pick (C ′)

8: C ′ ← C ′ \ {c ′}

9: a′ ← λc .if c = c ′ then i − 1 else a(c )

10: if proved(FP (k)) = proved(FP (a
′)) then

11: a← a′

12: end if

13: end while

14: C ← C \ {c | a(c ) = i}

15: end for

16: return a

17: end procedure

to produce for Pi . The ideal abstraction is computed by procedure LearnMinimalAbstraction,
which is explained shortly. At line 4, we run a pre-analysis (e.g. FP (0)) to transform each training
program P into its graph representation: GP is a map from programs in P to their graph repre-
sentations. At lines 5 and 6, the algorithm uses procedure LearnSetOfFeatures to learn each
parameter Fi (1 ≤ i ≤ k ), which denotes the set of nodes in the graphs in GP that should receive
the abstraction degree i . Although Fi is obtained iteratively, there is no dependency between loop
iterations and therefore the k different tasks at lines 5 and 6 can be run in parallel to reduce the
learning cost. At line 8, the learned parameters ⟨F1,F2, . . . ,Fk ⟩ are returned as final output.

Learning Minimal Abstraction. The objective of learning is to find a set of parameters Π =
⟨F1,F2, . . . ,Fk ⟩ with which the heuristicHΠ can produce ideal abstractions for training programs.
We define ideal abstractions to be minimal abstractions [Liang et al. 2011] and therefore the learning
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objective is as follows:

Find Π = ⟨F1,F2, . . . ,Fk ⟩ such that ∀Pi ∈ P.HΠ (Gi ) is a minimal abstraction for Pi .

where Gi is a graph obtained by running a pre-analysis on Pi (e.g. Gi = graph(FPi (0))). The
definition of minimal abstractions is as follows:

Definition 4.1 (Minimal Abstraction [Liang et al. 2011] ). An abstraction a is a minimal abstraction
for program P if

(1) a is precise: proved(FP (a)) = proved(FP (k)), and
(2) a is minimal: (a′ ⊑ a ∧ proved(FP (a

′)) = proved(FP (a))) =⇒ a′ = a.

Algorithm 2 presents our algorithm for efficiently computing a minimal abstraction for program
P . Our algorithm is similar to the ScanCoarsen algorithm by Liang et al. [2011], but ours is more
efficient than the prior algorithm as we exploit the high-level structure of k-limited abstractions to
reduce the search space. The algorithm by Liang et al. [2011] first transforms k-limited abstractions
into binary abstractions (where k is 1), losing the opportunity to leverage the properties of the
search space induced by monotone k-limited analyses. As a result, the size of search space is
(k + 1) |CP | for the existing algorithm [Liang et al. 2011]. We safely reduce the space to k · 2 |CP | .
At line 2, we set C to all program components CP . The algorithm begins with the most precise

abstraction (line 3). At lines 4ś15, it considers each of the abstraction degrees 1, 2, . . . ,k in reverse.
Iterating the abstraction degrees in reverse (from k to 1) is important to reduce the search space
safely. At lines 6ś13, it iteratively picks a program component (line 7) and assigns the lower
abstraction degree i − 1 to it (line 9). At line 10, the algorithm checks if the refined abstraction still
preserves the precision; if so, the lower abstraction degree is sufficient for that program component.
Otherwise, the program component needs the degree i to preserve the precision. At the end of
the iteration (line 14), we exclude from C the program components that are determined to require
the current degree i (i.e. {c | a(c ) = i}). In the worst case (when the minimal abstraction is λc .0),
our algorithm iterates k · |C | times where the search space for each degree i is 2C and we have k
different degrees. Although the algorithm considers a significantly smaller search space than the
original one, it still guarantees to find a minimal abstraction:

Theorem 4.2. Algorithm 2 returns a minimal abstraction for the input program P .

Proof. See the proof in the link.1 □

Learning a Set of Features. Algorithm 3 describes the algorithm for learning a set of features.
It takes the abstraction level i , minimal abstractions AP, and graphs GP as input. It returns as
output a set of features F that best describe the nodes assigned the abstraction level i according
to minimal abstractions in AP. At line 2, it collects all program components C (e.g. nodes) whose
abstraction degrees are i according to minimal abstractions. At line 3, it initializes F to be the
empty set. At lines 4ś8, the algorithm iteratively calls LearnFeature to generate a feature. The
algorithm adds the generated features to F until the features cover all program components, and
returns F as learned features when F does so.

Learning a Feature. Algorithm 4 presents how each feature f in F is learned. LearnFeature
takes as input components C and graphs GP, and aims to generate a feature f that maximizes the
following score function:

Score( f ,C ) =

∑

P ∈P |C ∩ γGP (P ) ( f ) |
∑

P ∈P |γGP (P ) ( f ) |

1 http://doi.org/10.5281/zenodo.4216569
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Algorithm 3 Learning a set of features

Input: Abstraction level i , minimal abstractions AP, graphs GP

Output: A set F of features
1: procedure LearnSetOfFeatures(i,AP,GP)
2: C ← {c | P ∈ P, c ∈ CP ,AP (P ) (c ) = i}

3: F ← ∅

4: while C , ∅ do

5: f ← LearnFeature(C,GP)

6: F ← F ∪ { f }

7: C ← C \ {c | P ∈ P, c ∈ CP , c ∈ γGP (P ) ( f )}

8: end while

9: return F

10: end procedure

Algorithm 4 Learning a feature

Input: Program components C , graphs GP

Output: A feature f

1: procedure LearnFeature(C,GP)

2: f ← (ϵ, ([0,∞], [0,∞]), ϵ )
3: f ′ ← (ϵ, ([0,∞], [0,∞]), ϵ )
4: do

5: f ← f ′

6: f ′ ← Refine( f ,C )

7: if Score( f ′,C ) ≥ θ then

8: return f ′

9: end if

10: while Score( f ′,C ) > Score( f ,C )

11: return f

12: end procedure

where the score is a real number between 0 and 1. Intuitively, the score describes how accurately a
feature describes the program components in C . For example, the score becomes the highest value
1 when ∀P ∈ P. γGP (P ) ( f ) ⊆ C . The score decreases as the feature selects components not in C .

The algorithm starts from the most general feature, i.e., (ϵ, ([0,∞], [0,∞]), ϵ ), and iteratively
refines it until the feature becomes sufficiently informative, meaning that the score of the refined
feature becomes higher than the hyper parameter θ . The value of θ has great impacts on the
performance of learned heuristics, and we discuss how we determine the value of θ in Section 5.2.
At lines 4ś10, the algorithm iteratively calls Refine to make the current feature f more specific.
When no more improvement is possible (i.e. Score( f ′,C ) ≤ Score( f ,C )), the loop terminates and
the algorithm returns the current feature f . We define the refinement function Refine as follows:

Refine( f ,C ) = argmax
f ′∈Append(f )∪Replace(f )

Score( f ′,C )

where Append( f ) and Replace( f ) produce new features that are more specific than f . From the set
of new features, Refine chooses the one with the highest score. Append( f ) denotes the features that
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are obtained by appending an abstract node to f :

Append((⟨p̂0, . . . , p̂q⟩, n̂, ⟨ŝ0, . . . , ŝr ⟩)) =

{(⟨â′, p̂0, . . . , p̂q⟩, n̂, ⟨ŝ0, . . . , ŝr ⟩), (⟨p̂0, . . . , p̂q⟩, n̂, ⟨ŝ0, . . . , ŝr , â
′⟩) | â′ ∈ Specify(([0,∞], [0,∞]))}

where the function Specify denotes a strategy for making a feature more specific. In experiments,
we used the following strategy:

Specify(([a,b], [c,d])) = {([a+b
2
,b], [c,d]), ([a, a+b

2
], [c,d]), ([a,b], [ c+d

2
,d]), ([a,b], [c, c+d

2
])}

where, ifb (resp.,d) equals to∞, it is replaced by the maximum number of incoming (resp., outgoing)
edges in the training graphs (GP).

The definition of Specify is a design choice. For example, we can consider the following definition
for Specify:

Specify(([a,b], [c,d])) =

{([a+b−a
3
,b], [c,d]), ([a, b-b−a

3
], [c,d]), ([a,b], [c+d−c

3
,d]), ([a,b], [c, d-d−c

3
])}.

With the above definition, we can still find desirable features for the training set. It, however, takes
more iterations to obtain such features because it specifies the interval value of features more
carefully than the one we used.
On the other hand, Replace( f ) denotes the features that are obtained by replacing one of the

abstract nodes in f by more specific ones:

Replace((⟨p̂0, . . . , p̂q⟩, n̂, ⟨ŝ0, . . . , ŝr ⟩)) =

{(⟨p̂0, . . . , p̂q⟩, n̂
′
, ⟨ŝ0, . . . , ŝr ⟩) | n̂

′ ∈ Specify(n̂)}

∪ {(⟨p̂ ′
0
, . . . , p̂ ′q⟩, n̂, ⟨ŝ0, . . . , ŝr ⟩) | j ∈ [0,q], p̂

′
j ∈ Specify(p̂j ),∀i , j . p̂ ′j = p̂j }

∪ {(⟨p̂0, . . . , p̂q⟩, n̂, ⟨ŝ
′
0
, . . . , ŝ ′r ⟩) | j ∈ [0, r ], ŝ

′
j ∈ Specify(ŝj ),∀i , j . ŝ ′j = ŝj }

Example. With an example, we explain how an actual feature used in our evaluation (Sec-
tion 5.1.2) is generated where θ is 0.5.

(1) Our algorithm starts from the most general feature f :

[0,∞],[0,∞]
.

(2) It enumerates 12 cases of refined features from f = (ϵ, ([0,∞], [0,∞]), ϵ ) (e.g., 8 cases of Ap-
pend(f ) and 4 cases of Replace(f )). It chooses the following feature produced from Replace(f ):

[0,97],[0,∞]

which has the highest score 0.06 among the 12 cases of features.
(3) Because the score is less than 0.5, it refines the feature again to the following specific one,

which comes from Append(ϵ, ([0, 97], [0,∞]), ϵ ), with the same manner:

[0,97],[0,∞] [97,∞],[0,∞]

where the feature has score 0.23.
(4) To find a better one, it refines the feature further; it enumerates 16 cases of refined features

(e.g., 8 cases for replacing and 8 cases for appending a node). The following feature is selected:

[0,97],[0,∞] [97,∞],[140,∞]

where the score is 0.37.
(5) In the next iteration, it finally finds an informative feature which has a score 0.55:

[0,48],[0,∞] [97,∞],[140,∞]
.
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5 EVALUATION

In this section, we experimentally evaluate our technique for learning graph-based heuristics. We
aim to answer the following research questions:

• Effectiveness and Generality: How effectively does the learned heuristic perform com-
pared to the state-of-the-art heuristics? Is it generally applicable for different analysis tasks
without manual effort for designing application-specific features?
• Learning Algorithm: How much does the learning cost? How does the hyper-parameter θ
affect the performance of the learned heuristics?
• Learned Insight: Does our approach produce explainable heuristics? What are the insights
learned from the generated heuristics?

Overall Setting. We implemented our approach, as a toolGraphick, on top ofDoop [Bravenboer
and Smaragdakis 2009], a pointer analysis framework for Java that has been widely used in prior
works [Jeon et al. 2018; Jeong et al. 2017; Smaragdakis et al. 2014; Tan et al. 2016, 2017]. For the
precision and scalability metrics, we follow existing works [Jeong et al. 2017; Li et al. 2018a,b;
Tan et al. 2017] and use the number of may-fail casts alarms and the time spent on each analysis.
We also use the number of polymorphic call sites (i.e. call sites whose targets are not uniquely
determined by each pointer analysis) and call-graph edges as additional precision metrics. For all
precision metrics, the lower is the better. We set the time budget as 3 hours (10,800 sec) for all
analyses. For the hyper-parameter θ , we chose the one among various values (e.g., 0.1, 0.2, ..., 0.9)
via cross validation (we explain how this is done in section 5.2). For each feature, we limit it to have
at most three nodes due to scalability. All the experiments were done on a machine with i7 CPU
and 64 GB RAM running Ubuntu 16.04 (64bit). We used the OpenJDK (1.6.0_24) library.
We used a total of 17 programs: 10 programs (luindex, lusearch, antlr, pmdm , chart, eclipse,

fop, bloat, xalan, and jython) from the DaCapo 2006-10-MR2 benchmark suite [Blackburn et al.
2006] and 7 programs (pmds , jedit, briss, soot, findbugs, JPC, and checkstyle) obtained from the
artifacts provided by Tan et al. [2017] and Li et al. [2018b]. Here, we used two different versions
of pmd where pmdm is a small program used by Tan et al. [2017], and pmds is an open-source
application used by Li et al. [2018b]. We split the benchmark programs into training, validation,
and test sets. The training and validation sets are used for learning a heuristic, and the test set is
used for evaluating the performance of the learned heuristic. For the training set, we used relatively
small benchmarks, because our algorithm includes a process to obtain minimal abstractions and
this task is too expensive to run for large programs. The validation set is used for choosing the
hyper-parameter θ ; we chose the one that leads the heuristic to the best performance on the
validation set.

5.1 Effectiveness and Generality

We demonstrate the effectiveness and generality of our technique by comparing it with two
state-of-the-art graph-based heuristics: Scaler [Li et al. 2018b] andMahjong [Tan et al. 2017].

5.1.1 Comparison with Scaler.

Setting. Scaler is a context-sensitivity heuristic that works on the object allocation graph
(OAG) [Li et al. 2018b]. From the OAG, it infers a policy to assign one of 2-object-sensitivity,
2-type-sensitivity, 1-type-sensitivity, and context-insensitivity to each method. We used the same
pre-analysis of Scaler to obtain the OAG and let our technique produce a heuristic. We set maxK

in Section 3.2 to 3, where 0, 1, 2, and 3 correspond to context-insensitivity, 1-type-sensitivity,
2-type-sensitivity, and 2-object-sensitivity, respectively. Unlike Scaler, our heuristic assigns a
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context for each heap allocation site. It poses 4N possibilities where N denotes the number of
allocation-sites in the program.

Although the primary objective in this evaluation is to compare with Scaler, we evaluated two
more heuristics as well: Zipper [Li et al. 2018a] and Data [Jeong et al. 2017]. Zipper is another
graph-based context-sensitivity heuristic that works on the precision flow graph (PFG). Data is not
graph-based, but we include it because Data is currently the state-of-the-art data-driven pointer
analysis algorithm (with hand-crafted features). In short, we compare the following pointer analysis
algorithms:

• Scaler: A hand-crafted graph-based object-sensitivity heuristic for OAG [Li et al. 2018b]
• Graphick: Our learning-based graph-based object-sensitivity heuristic for OAG
• Zipper: A hand-crafted graph-based object-sensitivity heuristic for PFG [Li et al. 2018a]
• Data: A state-of-the-art learning-based object-sensitivity heuristic [Jeong et al. 2017]
• 2objH: The 2-object-sensitivity with 1-context-sensitive heap (precision upper bound)
• Insens: The context-insensitive analysis (scalability upper bound)

We used three programs (luindex, lusearch, antlr) as the training set, one program (findbugs)
as the validation set, and the remaining thirteen programs (pmds , chart, eclipse, jedit, briss, soot,
jython, pmdm , fop, bloat, JPC, checkstyle, xalan) as the test set. We chose findbugs as a validation
program because it is a popular Java application and requires suitable heuristics to be analyzed
cost-effectively. For example, 2objH does not terminate on this program even after thousands of
seconds or more.

Results. Table 1 and 2 present the performance of the context-sensitivity heuristics described
above. The number in a parenthesis for graph-based heuristics (i.e. Graphick, Zipper, and Scaler)
represents the sum of time spent on performing the pre-analysis (i.e. context-insensitive analysis)
and running the heuristics on the graphs for extracting context abstractions.
The results show that our technique can automatically generate a cost-effective heuristic that

performs as competitive as the state-of-the-art object-sensitivity heuristics. Compared to the
baseline heuristic Scaler, which employs the same graph OAG, Graphick shows a better precision
than Scaler with some losses in scalability for the test programs pmds , eclipse, and briss. For
example, Graphick reports 101 less may-fail casts alarms than Scaler for the test program pmds
while taking 216 more seconds. In addition, Graphick shows better performance in both precision
and scalability than Scaler on the test programs (except pmdm) in Table 2. For example, in
jedit, Graphick produces 201 less alarms with 35% less analysis time. In comparison to Zipper,
Graphick consistently outperforms in scalability. For example, Graphick successfully analyzed
pmds , jedit, and briss with remarkably less costs when Zipper fails to analyze them within the time
budget. In comparison to Data, the result shows that Graphick performs far better in precision.
Although Data presents better scalability than Graphick, it produces more than 92 alarms for
the test programs pmds , eclipse, jedit and briss. Compared to 2objH, Graphick shows better
performance in scalability for the majority of test programs which 2objH fails to analyze within the
given time budget (3 hours).

5.1.2 Comparison with Mahjong.

Setting. Mahjong is a graph-based heap abstraction heuristic that works on the field points-to
graph (FPG) [Tan et al. 2017]. From the FPG, which is obtained by running a context-insensitive pre-
analysis, Mahjong infers a policy that determines whether to merge objects allocated in different
allocation sites. We used the same pre-analysis to obtain the FPG and let our technique produce a
heap abstraction heuristic. Unlike Mahjong, our heap abstraction heuristic (i.e. Graphick) assigns
‘type’ (type-based heap abstraction) or ‘alloc’ (allocation-site-based heap abstraction) to each heap
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Table 1. Performance of the context-sensitivity heuristics against benchmarks. For all metrics, the lower is the

better. For precision metric, we use the number of may-fail casts(#may-fail casts) and polymorphic call sites

(#poly-call sites) whose targets are not uniquely determined by each pointer analysis. For scalability metric,

we use analysis time, and the number in a parenthesis presents the sum of time spent during pre-analysis

process. #call-graph-edges for the training and validation programs are omitted due to the lack of space.

Graphick Scaler Zipper Data 2objH Insens

T
ra
in
in
g
p
ro
g
ra
m
s luindex

analysis time (s) 22(+22) 36(+17) 33(+17) 19 36 15

#may-fail casts 297 297 310 341 297 734

#poly-call sites 682 675 677 702 675 940

lusearch

analysis time (s) 24(+21) 63(+15) 62(+17) 19 66 15

#may-fail casts 299 299 305 347 299 844

#poly-call sites 858 850 853 883 850 1,133

antlr

analysis time (s) 50(+94) 51(+24) 84(+26) 33 109 24

#may-fail casts 409 412 420 513 409 918

#poly-call sites 1,495 1,488 1,488 1,517 1,487 1,729

T
es
t
p
ro
g
ra
m
s

pmds

analysis time (s) 710(+92) 494(+49) >10,800 117 >10,800 48

#may-fail casts 2,075 2,176 - 2,145 - 2,948

#poly-call sites 3,507 3,536 - 3,647 - 4,183

#call-graph-edges 92,589 92,775 - 94,328 - 104,457

chart

analysis time (s) 63(+73) 184(+48) 113(+56) 35 196 48

#may-fail casts 998 976 888 974 883 1,810

#poly-call sites 1,392 1,402 1,379 1,435 1,378 1,852

#call-graph-edges 52,544 53,198 52,377 52,647 52,374 63,453

eclipse

analysis time (s) 1,395(+103) 652(+92) 9,701(+114) 159 >10,800 91

#may-fail casts 2,989 3,211 2,897 3,178 - 4,190

#poly-call sites 8,418 8,486 8,390 8,627 - 9,197

#call-graph-edges 144,873 145,953 143,727 146,512 - 161,222

jedit

analysis time (s) 845(+90) 1,377(+79) >10,800 137 >10,800 78

#may-fail casts 2,196 2,397 - 2,298 - 3,398

#poly-call sites 3,917 4,012 - 4,091 - 4,769

#call-graph-edges 98,401 99,536 - 99,697 - 120,309

briss

analysis time (s) 2,368(+169) 907(+151) >10,800 499 >10,800 149

#may-fail casts 3,065 3,428 - 3,162 - 4,904

#poly-call sites 5,099 5,323 - 5,291 - 6,297

#call-graph-edges 150,351 152,761 - 151,861 - 176,785

soot

analysis time (s) >10,800 883(+727) >10,800 >10,800 >10,800 698

#may-fail casts - 10,549 - - - 16,570

#poly-call sites - 14,822 - - - 16,532

#call-graph-edges - 374,877 - - - 415,476

jython

analysis time (s) >10,800 314(+96) >10,800 425 >10,800 73

#may-fail casts - 1,852 - 1,773 - 2,234

#poly-call sites - 2,500 - 2,481 - 2,778

#call-graph-edges - 107,410 - 106,837 - 114,856

V
al
id

findbugs

analysis time (s) 305(+58) 191(+36) 1,399(+43) 59 2,458 35

#may-fail casts 1,436 1,452 1,412 1,663 1,409 2,508

#poly-call sites 2,188 2,195 2,182 2,220 2,182 2,925
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Table 2. Performance comparison among various context sensitivity heuristics against the left six benchmarks.

All the notations are the same with Table 1.

Graphick Scaler Zipper Data 2objH Insens

T
es
t
p
ro
g
ra
m
s

pmdm

analysis time (s) 43(+67) 55(+44) 57(+78) 30 67 23

#may-fail casts 288 287 300 327 287 679

#poly-call sites 643 636 638 667 636 885

#call-graph-edges 27,074 27,052 27,056 27,147 27,052 30,328

fop

analysis time (s) 212(+88) 341(+54) 533(+71) 74 949 53

#may-fail casts 1,568 1,732 1,449 1,600 1,446 2,458

#poly-call sites 2,876 2,945 2,848 3,009 2,844 3,585

#call-graph-edges 71,612 72,556 71,418 72,113 71,408 84,330

bloat

analysis time (s) 216(+30) 290(+21) 2402(+23) 44 2,422 20

#may-fail casts 1,215 1,222 1,205 1,288 1,193 1,924

#poly-call sites 1,458 1,465 1,429 1,496 1,427 2,014

#call-graph-edges 53,641 53,867 53,147 54,059 53,143 61,150

JPC

analysis time (s) 118(+69) 274(+38) 266(+55) 45 398 37

#may-fail casts 1,427 1,552 1,343 1,472 1,345 2,261

#poly-call sites 4,210 4,228 4,187 4,322 4,186 4,924

#call-graph-edges 79,912 80,098 79,787 80,208 79,783 94,569

checkstyle

analysis time (s) 133(+70) 264(+45) 396(+52) 69 1,693 44

#may-fail casts 600 625 590 644 581 1,114

#poly-call sites 1,052 1,038 1,040 1,089 1,035 1,444

#call-graph-edges 9,516 9,514 48,830 48,996 48,809 57,490

xalan

analysis time (s) 226(+64) 539(+38) 119(+45) 44 881 37

#may-fail casts 567 579 556 604 533 1,182

#poly-call sites 1,533 1,523 1,533 1,583 1,522 1,898

#call-graph-edges 45,269 44,887 9,125 45,549 44,871 5,1302

allocation-site which poses 2N possibilities where N denotes the number of allocation-sites in the
program. We compare the following four analyses:

• Mahjong: The state-of-the-art graph-based heap abstraction heuristic [Tan et al. 2017]
• Graphick: Our learning-based graph-based heap abstraction heuristic
• Alloc-Based: The uniform allocation-site-based heap abstraction (precision upper bound)
• Type-Based: The uniform type-based heap abstraction (scalability upper bound)

FollowingMahjong [Tan et al. 2017], all analyses above use 3-object-sensitivity with 2-context-
sensitive heap.
For this evaluation, we used the same benchmark programs in the section 5.1.1. We used four

programs (luindex, lusearch, antlr, pmdm ) as the training set and twelve programs (fop, chart, bloat,
xalan, JPC, checkstype, eclipse, pmds , jecit, briss, soot, jython) as the test set. We also used findbugs
as a validation program.

Results. Table 3 and 4 show that our technique can produce a competitive graph-based heap
abstraction heuristic from the FPG. In comparison withMahjong, Graphick shows a far better
scalability while losing precision a bit. Mahjong produced the same number of may-fail-casts
with the most precise one, Alloc-Based, but it was unable to analyze large programs like chart and
bloat within the time budget (3 hours). Although Graphick produced more alarms (103 at most)
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Table 3. Performance of the heap abstraction heuristics against benchmarks. The notions are the same with

those in Table 1.

Graphick Mahjong Alloc-Based Type-Based

T
ra
in
in
g
p
ro
g
ra
m
s

luindex

analysis time(s) 23(+90) 42(+21) 5,475 19

#may-fail casts 358 358 358 795

#poly-call sites 928 918 915 1,128

#call-graph-edges 33,450 33,365 33,356 37,898

lusearch

analysis time(s) 21(+92) 43(+19) >10,800 19

#may-fail casts 372 372 - 884

#poly-call sites 1,127 1,116 - 1,331

#call-graph-edges 36,298 36,237 - 41,211

antlr

analysis time(s) 31(+101) 48(+33) 5,241 26

#may-fail casts 463 463 463 1,002

#poly-call sites 1,630 1,626 1,623 1,836

#call-graph-edges 51,058 51,043 51,035 55,745

pmdm

analysis time(s) 44(+137) 88(+34) 9,146 42

#may-fail casts 871 871 871 1,418

#poly-call sites 1,142 1,133 1,130 1,388

#call graph edges 44,094 4,4016 44,004 50,365

T
es
t
p
ro
g
ra
m
s

fop

analysis time(s) 30(+117) 50(+26) 5,475 33

#may-fail casts 376 375 375 779

#poly-call sites 830 817 814 1,034

#call graph edges 34,259 34,192 34,184 38,629

chart

analysis time(s) 436(+350) >10,800 >10,800 199

#may-fail casts 1,331 - - 2,299

#poly-call sites 2,078 - - 2,363

#call graph edges 72,746 - - 82,952

bloat

analysis time(s) 376(+121) >10,800 >10,800 26

#may-fail casts 1,247 - - 1,926

#poly-call sites 1,593 - - 1,793

#call graph edges 56,535 - - 64,220

xalan

analysis time(s) 489(+162) 795(+29) >10,800 59

#may-fail casts 539 535 - 1,093

#poly-call sites 1,601 1,591 - 1,876

#call graph edges 46,026 45,950 - 51,761

JPC

analysis time(s) 1,730(+366) 3,309(+47) >10,800 524

#may-fail casts 1,300 1,226 - 2,007

#poly-call sites 4,211 4,139 - 4,646

#call graph edges 79,864 79,370 - 91,248

checkstyle

analysis time(s) 1,333(+563) 2,346(+53) >10,800 48

#may-fail casts 1,085 1,022 - 1,749

#poly-call sites 2,202 2,168 - 2,489

#call-graph-edges 66,321 65,943 - 77,962

V
al
id

findbugs

analysis time(s) 96(+363) 273(+70) >10,800 92

#may-fail casts 1,774 1,671 - 3,089

#poly call sites 3,576 3,534 - 4,281
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Table 4. Performance comparison between the heap abstraction heuristics against the left benchmarks.

Graphick Mahjong Alloc-Based Type-Based

T
es
t
p
ro
g
ra
m
s

eclipse

analysis time (s) >10,800 >10,800 >10,800 222

#may-fail casts - - - 4,852

#poly-call sites - - - 10,177

#call-graph-edges - - - 182,000

pmds

analysis time (s) >10,800 >10,800 >10,800 4,317

#may-fail casts - - - 2,941

#poly-call sites - - - 4,124

#call-graph-edges - - - 106,490

jedit

analysis time (s) 454(+242) 1,392(+40) 8,001 245

#may-fail casts 1,143 1,094 1,094 1,786

#poly-call sites 1,732 1,688 1,684 2,064

#call-graph-edges 55,476 55,156 55,145 64,825

briss

analysis time (s) >10,800 >10,800 >10,800 >10,800

#may-fail casts - - - -

#poly-call sites - - - -

#call-graph-edges - - - -

soot

analysis time (s) >10,800 >10,800 >10,800 7,741

#may-fail casts - - - 15,885

#poly-call sites - - - 14,617

#call-graph-edges - - - 359,358

jython

analysis time (s) >10,800 >10,800 >10,800 187

#may-fail casts - - - 1,211

#poly-call sites - - - 1,487

#call-graph-edges - - - 50,544

than Mahjong, it successfully analyzed programs (i.e. chart and bloat) which Mahjong failed
to analyze. Currently, the overhead, the time taken by extracting an abstraction from the FPG,
of our heuristic is bigger than Mahjong because Mahjong designed an efficient algorithm to
produce an abstraction from FPG while ours is not optimized to minimize it. The results, however,
still demonstrate that Graphick is competitive and has a strength in scalability compared to the
state-of-the-art technique as it successfully analyzed the large programs, chart and bloat, which
Mahjong cannot handle.

5.2 Learning Algorithm

Learning Cost . To learn a context-sensitivity heuristic, our learning algorithm took 169 hours
in total, where 144 hours are for getting minimal abstractions over the training programs and 25
hours for generating features. To learn a heap abstraction heuristic, the algorithm took 107 hours,
where 72 hours are for minimal abstraction generation and 35 hours for feature generation. We
note that, although the learning algorithm is expensive, it saves more expensive human costs by
automating the manual process of designing analysis heuristics that would take weeks or months.

Choosing Hyper-Parameter θ . Through our evaluation, we observed that the value of the
hyper-parameter θ plays an important role in the performance of the learned heuristic. Figure 5
depicts how performance of learned heuristics changes over the values of θ . The X-axis presents
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Fig. 5. How score of learned heuristic changes over the value of θ .

the value of θ set to learn each heuristic, and the Y-axis presents scores that we measured for

performance of each heuristicHθ according to
∑

P∈P proved(FP (Hθ (G )))
∑

P∈P cost(FP (Hθ (G )))
where cost denotes analysis

time. This score function presents the number of queries proved per second; thereby, more precise
and scalable the analysis, higher the score. The red dotted and black solid lines present how the
scores change over the training programs P and the validation program, respectively. For the
training programs, the score of the learned heuristic increases as the higher θ is given because the
heuristic becomes more fitted to the training programs.2 In our evaluation, both learned heuristics,
however, perform the best on the validation program when θ is 0.5; thus, Graphick in Table 1 and
Table 3 corresponds toH0.5.

5.3 Learned Insights

The learning algorithm generated 197 features in total for the object-sensitivity heuristic (68
features for 2-object-sensitivity, 29 for 2-type-sensitivity, and 100 features for 1-type-sensitivity). It
generated 96 features for the heap abstraction heuristic.

Top-5 Features. Figure 6 describes the most informative features generated by our technique
for each abstraction degree and their concretization in the given graphs. The second column Top 5

Features, in decreasing order of portion, presents top 5 features which have the greatest number
of precision-critical nodes satisfying the features with scores above 0.5. For example, the first
feature in 1type contains 47% nodes of the total precision-critical nodes which are to be applied
1-type-sensitivity, and has a score of 0.57. If a feature is too general (e.g., (ϵ, ([0,∞], [0,∞]), ϵ )), it is
excluded even with a large portion (e.g., 100%) because its score is under 0.5. Similarly, if a feature
is too specific, it is also excluded because it includes a small number of precision-critical nodes even
with a good score. For the features, the gray colored abstract nodes correspond to the target one n̂
in each feature (e.g., (⟨p̂0, p̂1, . . . , p̂q⟩, n̂, ⟨ŝ0, ŝ1, . . . , ŝr ⟩) ∈ Feature). Other nodes are predecessors
or successors of the target abstract nodes (e.g., p̂0, ŝ0, and ŝ1). For each feature, we show the number

2It learned a bit bad heuristic when θ is 0.9 in object-sensitivity heuristic because it is difficult to generate specific features

that satisfy such high precision constraints; it eventually generates a general feature that include lots of nodes.
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Top 5 Features portion score
Concretization

(Top 1)

O
b
je
ct
-S
en
si
ti
v
it
y
H
eu
ri
st
ic

1t
y
p
e

[0,∞],[61,∞] [46,∞],[0,∞] 47% 0.57

n2n1 n3

n4

[0,∞],[0,∞] [0,∞],[117,∞] 36% 0.63

[0,∞],[100,∞] [0,∞],[29,∞] 35% 0.55

[0,∞],[100,∞] [0,∞],[0,∞] [0,∞],[36,43] 29% 0.71

[0,∞],[109,∞] [0,∞],[0,∞] [171,∞],[0,∞] 25% 0.57

2t
y
p
e

[0,∞],[36,39] [0,∞],[73,75] 9% 0.66

n2

n1
[105,155],[0,∞] 9% 1

[0,∞],[0,61] [60,76],[0,61] [0,22],[0,∞] 9% 0.5

[0,∞],[29,61] [171,228],[0,∞] [0,46],[0,∞] 4% 1

[84,91],[0,∞] 4% 0.5

2o
b
j

[0,∞],[53,61] 9% 0.53

n1

[0,∞],[24,25] 6% 0.53

[0,∞],[0,7] [9,11],[0,∞] [76,∞],[0,∞] 2% 0.82

[0,∞],[43,∞] [0,∞],[0,14] [22,24],[0,∞] 1% 0.63

[0,∞],[145,147] [0,∞],[0,∞] [0,46],[0,∞] 1% 0.69

H
ea
p
A
b
st
ra
ct
io
n

H
eu
ri
st
ic

[0,∞],[0,3] [48,∞],[0,∞] [0,∞],[140,∞] 35% 0.61
n1

n2

n3

[0,12],[0,3] [0,97],[0,∞] [0,∞],[140,∞] 33% 0.53

[38,∞],[0,62] [0,∞],[236,∞] 27% 0.59

[0,48],[0,62] [72,84],[0,∞] 24% 0.53

[0,24],[0,∞] [21,∞],[140,∞] [0,97],[0,∞] 22% 0.53

Fig. 6. Top-5 features learned by our technique, and concrete nodes implied by the top-1 feature. Gray colored

abstract nodes in the features correspond to the target nodes and others are predecessors or successors.

Gray colored nodes in the column Concretization are precision-critical nodes which are selected by the first

features; other nodes are predecessors or successors that make the gray colored nodes satisfy the features.
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Table 5. Performance of our manually-designed graph-based heap abstraction heuristic for FPG

benchmarks alarms time(s) benchmarks alarms time(s)

luindex
heuristic 374 29(+29)

lusearch
heuristic 388 33(+31)

Alloc-Based 358 5,475 Alloc-Based - >10,800

antlr
heuristic 478 44(+47)

pmdm
heuristic 886 83(+65)

Alloc-Based 463 5,241 Alloc-Based 871 9,146

fop
heuristic 391 41(+46)

xalan
heuristic 548 841(+85)

Alloc-Based - >10,800 Alloc-Based - >10,800

of satisfying nodes over the total precision-critical nodes in the given graphs (portion) and the
scores (score). The right most column, Concretization, illustrates the visualized concretization
for each first feature in Top 5 Features column, where the gray colored nodes correspond to the
target abstract nodes of the first feature. For space reasons, we draw each node to have at most 13
incoming and outgoing edges although it can have more than 13 edges.

Insights. The generated features during the learning process provide hints on designing analy-
sis heuristics from the graphs. For example, we investigated the features of the heap abstraction
heuristic in Figure 6 and found two commonalities in them. First, the features have the form of
(ϵ, n̂, ŝ) where ŝ is not ϵ , which implies that we should consider successors more than predeces-
sors when designing heap abstraction heuristics from points-to graph. The second commonality

is that ŝ or n̂ tends to include an abstract node ENode that presents nodes with lots of outgoing

edges, i.e., ENode = (itv, [b,∞]) where the number b is about 3% of the total nodes in a graph
of a training program. From these observations, we manually designed a graph-based heap ab-
straction heuristic which assigns allocation-site based heap abstraction to the target nodes if
at least 3% of the total nodes in FPG belong to either the target node or its successor nodes
(i.e.H = ⟨{(ϵ, ([0,∞], [b ′,∞]), ϵ ), (ϵ,⊤, ⟨([0,∞], [b ′,∞])⟩), (ϵ,⊤, ⟨⊤, ([0,∞], [b ′,∞])⟩), . . . }⟩ where
⊤ equals to the most general one ([0,∞], [0,∞]) and b ′ is 3% of the total nodes in the given graph).
Otherwise, the heuristic assigns type-based heap abstraction to the others. Table 5 demonstrates
the performance of the manually-crafted heuristic. In comparison to Alloc-Based, it reduces about
99% of analysis cost while producing only 2% more alarms.

Intuitively, the nodes with lots of successors in FPG should be analyzed precisely because merging
the objects with others would produce lots of spurious analysis results. For example, if there exists
an object with lots of field objects which we want to merge with another one with a few field
objects, it eventually produces lots of spurious results stating that the both heaps can have lots
of field objects. Such insight is related with that of Mahjong which merges the objects if their
successors have the same type; statistically, if an object has lots of successors, there hardly exist
the other objects with exactly the same types of successors. Surprisingly, it is easy to find such
insight through the features generated by our technique. Note that this insight is general as it is
not dependent to Java programs. For example, when analyzing a C program, it is a required task
not to merge such heaps with others as it would produce lots of spurious results.
Interestingly, Figure 6 also shows the difference between the statistically-learned insight be-

hind Graphick and the logical insight behind Scaler in deciding which nodes to analyze more
precisely. Based on the logical insight, Scaler relies heavily on the number of incoming edges as
that number in the object allocation graph indicates how many contexts will be constructed in
object sensitivity. Graphick, however, treats the number of neighbor nodes’ outgoing edges more
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Table 6. Performance comparison between conventional 2-hybrid-context-sensitivity (S2objH) and 2-hybrid-

context-sensitivity with our learned heuristic for 2-object-sensitivity (Graphick).

pmdm chart eclipse xalan fop bloat

Graphick
#may-fail casts 220 867 2,880 479 1,408 1,147

analysis time (s) 45+(78) 83(+76) 1,426(+105) 185(+57) 245(+85) 215(+30)

S2objH
#may-fail casts 220 757 - 447 1,295 1,125

analysis time (s) 42 195 >10,800 428 818 2,238

importantly, as shown in Figure 6. Such differences result in the performance gap between the two
object-sensitivity heuristics.

Generality of learned heuristic. We found the learned heuristic for object sensitivity is general
to the hybrid-context sensitivity [Kastrinis and Smaragdakis 2013]. Table 6 presents the performance
of the conventional 2-hybrid-context sensitivity (S2objH) and 2-hybrid-context sensitivity with
the learned heuristic (Graphick) used in Section 5.1.1. The table shows that Graphick is also
cost-effective compared to S2objH. For example, on a test program bloat, Graphick produces only
22 more alarms while reducing about 90% of analysis costs.

5.4 Performance Variations on Different Training Datasets

We constructed a benchmark suite with the programs from the DaCapo suite, and used 3∼4 small
programs (i.e. luindex, lusearch, antlr, and pmdm ) as our training set. In this subsection, we evaluate
Graphick on different combinations of training data to see how its performance is affected by the
number of training programs.
We found that the amount of training data is overall critical, and using four small programs

as a training set can produce competitive heap abstraction heuristics cost-effectively. Table 7

presents the performance and scores (i.e.
#proven casts

analysis time (s)
) of each heuristic learned with various

combinations of training programs (i.e., {luindex}, {luindex, lusearch}, {luindex, lusearch, antlr}, and
{luindex, lusearch, antlr, pmd}) and an ideal heuristic (ideal) against the validation program findbugs.
For the ideal heuristic (ideal), we assume that it has the precision ofMahjong and the scalability
of Type-Based since they are the most precise and the most scalable respectively in our space of
heap abstraction heuristic. The second row, analysis time (s), in table 7 indicates the amount of
time each heuristic took to successfully analyze the validation program, and the third row, #proven
casts, presents the number of castings proved to be safe; thereby, the more precise the analysis,
the greater the number of proven casts. As shown in Table 7, the score increases with respect to
the size of training set. The score of {luindex, lusearch, antlr, pmd} (i.e. 13.6) is nearly the same
with that of the ideal heuristic (i.e. 15.4) in our evaluation. It implies that using four programs as a
training set is sufficient to produce cost-effective heap abstraction heuristics.

Using four programs as training programs could produce cost-effective heuristics because, even
though our training programs are the smallest among the total benchmark programs, they still
provide sufficient learning data for our approach. First, the DaCapo suite itself is a collection of
realistic programs. DaCapo has been carefully designed to include various behaviors and complex
codes [Blackburn et al. 2006]. For example, even the smallest program (i.e. lusearch) in Dacapo has
more methods than the largest one in the SPEC benchmark [SPECjvm98 1999]. Secondly, when
training heuristics in our approach, what matters is the number of allocation-sites, not the number
of programs; the learning algorithm of Graphick treats individual allocation-sites as labelled data.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 179. Publication date: November 2020.



Learning Graph-Based Heuristics for Pointer Analysis without Handcrafting Application-Specific Features 179:25

Table 7. Performance comparison among heuristics learned from various combinations of training sets

(i.e. {luindex}, {luindex, lusearch}, {luindex, lusearch, antlr}, and {luindex, lusearch, antlr, pmd}) and an ideal

heuristic (ideal) against the validation program findbugs. #proven casts presents the number of casts proved

to be safe; a more precise analysis produces a larger number of #proven casts. The row score presents the

quality of the heuristics computed by
#proven casts

analysis time (s)
.

{luindex} {luindex, lusearch}
{luindex, lusearch {luindex, lusearch

ideal
antlr} antlr, pmd}

analysis time (s) 4,090(+185) 411(+107) 153(+226) 96(+363) 92

#proven casts 672 1,321 1,289 1,315 1418

score 0.16 3.2 8.4 13.6 15.4

Our training programs provide sufficient training data to learn cost-effective heuristics in this sense.
More precisely, the smallest program (lusearch) has 4,752 allocation-sites, and the remaining three
training programs (lusearch, antlr, pmdm ) provide 14,068 unique allocation-sites in total; we have a
total of 18,820 allocation-sites for training data.
In practice, we recommend a user to choose programs with less than 400 classes as training

programs, for which we found Grahpick typically works well. Although limited, our experience
shows that a collection of such programs can provide useful training data.

5.5 Limitations and Discussion

Graphick has several limitations. One major limitation is that the heuristics produced by our
approach may not be generalized if the setting in training steps is substantially different from that
used in evaluation in terms of analyzer F , target client, and maxK . More specifically, the learned
heuristics by Graphick are dependent on the training data, the analyzer F used, and the target
client (e.g., may-fail casts). For example, the precision on the number of may-fail casts can be
unsatisfactory if we train the heuristics with the number of poly-call sites as the target client. The
context-length maxK for the main analysis is also limited to the one used in the training phase.
Besides those generality issues, the training process of Graphick is time-consuming (i.e. it took
200 hours in our evaluation).

Despite those limitations, we believe Graphick can be useful in practice. First of all, note that in
this paper we showed the effectiveness of Graphick in a realistic (yet particular) setting, where we
used a real-world pointer analysis framework and benchmarks. In particular, we do not believe
the expensive training phase of Graphick is a serious limitation in practice, because it is not
only fully automatic but also rather cheap compared to the much more expensive process of
handcrafting analysis heuristics or features by human experts. The learned heuristic is dependent
on the training data but, as we showed in this paper (Section 5.4), using a small number of real
programs is likely to provide a sufficient amount of actual training data (e.g., allocation sites) in
practice. Also, the selection of training programs did not require careful engineering efforts in
our case. The context length maxK is rather limited (2-object-sensitivity), but 2-object-sensitive
pointer analysis is generally considered to be highly precise in practice [Li et al. 2018a].

For the issue on target clients, we showed that training heuristics using the may-fail-cast client
generalizes well for the three clients (may-fail-casts, poly-call-sites, and call-graph-edges). When
the downstream clients are substantially different, however, one solution is to choose the target
clients as general as possible in the training process. For example, we can use the size of context-
insensitive variable points-to sets instead of the number of may-fail-casts as the context-insensitive
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variable points-to set is one of the most general clients that affect the others. The clients we used
in our evaluation (i.e. may-fail-casts, poly-call-sites, and call-graph-edges) are computed based on
the context-insensitive variable points-to set and therefore minimizing it would likely minimize
other clients too.

6 RELATED WORK

In this section, we discuss the prior works related to ours.

Heuristics for Static Analysis. Designing heuristics for precise and scalable static analysis has
been an active research area. For example, Smaragdakis et al. [2014] proposed a context-sensitivity
heuristic that runs pre-analysis (e.g., context-insensitive analysis) to identify scalability-detrimental
method calls if context-sensitive analysis is applied; it analyzes those methods context-insensitively
to obtain tractable scalability while sacrificing precision a bit. Oh et al. [2014] presented the idea of
impact pre-analysis, which first estimates the impact of applying context sensitivity with a fully
context-sensitive yet coarse pre-analysis and then performs selective context sensitivity during the
main analysis. Hassanshahi et al. [2017] aimed to find a parameter which determines context depths
for each heap. They performed context-insensitive analysis as a pre-analysis, and from the analysis
results, determined the heap context depths for each object to achieve reasonable scalability without
losing too much precision. Kastrinis and Smaragdakis [2013] introduced a hybrid context-sensitivity
heuristic that applies object-sensitivity for the virtual calls while applying call-site-sensitivity to
the static calls. Xu and Rountev [2008] proposed a technique to identify the equivalence classes; it
merges the contexts in the same class in order to improve the scalability without any precision loss.
Recently, to design cost-effective analysis policies, graph-based heuristics have arisen as a trending
technique [Li et al. 2018a,b; Lu and Xue 2019; Tan et al. 2016, 2017]; our work lies in this line of
research and aims to generate such graph-based heuristics automatically.

Data-driven Static Analysis. Our work also belongs to the family of techniques known as data-
driven static analysis [Cha et al. 2016, 2018; He et al. 2020; Heo et al. 2017; Jeong et al. 2017; Oh et al.
2015]. Data-driven static analysis leverages machine learning to produce favorable program analysis
heuristics automatically. Oh et al. [2015] proposed a data-driven technique based on Bayesian
optimization to learn flow- and context-sensitivity heuristics. They designed features for variables
and functions in C programs to learn flow- and context-sensitivity heuristics which are presented
as linear combinations of the features. Later, the linear-model approach was extended to capture
disjunctive program properties [Jeon et al. 2019; Jeong et al. 2017] Jeon et al. [2018] introduced an
approach, called data-driven context tunneling, which constructs contexts with the most important
k context elements instead of using the most recent k context elements as the conventional k
context abstraction does. To learn context tunneling heuristics, they designed features for methods
of Java programs to present which method calls require context tunneling for better performance
in both precision and scalability. Heo et al. [2016] proposed a supervised learning algorithm to
learn variable clustering strategy in the Octagon domain where the learned heuristics determine
whether to keep relation between variables during analysis. He et al. [2020] introduced a data-driven
approach Lait that learns neural policies for removing substantially redundant constraints that
need not be computed in numeric program analysis. Singh et al. [2018] leveraged reinforcement
learning to speed up numeric analysis with the Polyhedra domain. The prior works above require
manually designed features to learn suitable heuristics. By contrast, our technique proposes to use
a feature language to reduce the burden of manual effort on designing features.
Closely related to our work, Chae et al. [2017] also automatically generated features for data-

driven static analysis. Given programs, it runs a program reducer to convert the programs into
small feature programs which only maintain the query-related program components, and generates

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 179. Publication date: November 2020.



Learning Graph-Based Heuristics for Pointer Analysis without Handcrafting Application-Specific Features 179:27

features for data-driven static analysis from data-flow graphs obtained from the feature programs.
Not to mention that the technique is specialized for C programs, it is hardly applicable to learning
context-sensitivity heuristics because reducing programs spanning multiple procedures into reason-
ably small feature programs while maintaining the query-related components is challenging [Chae
et al. 2017] . In this paper, we present a new technique based on a feature language, which does not
have such a limitation and is effectively applicable to context-sensitive analysis for Java.

Finding Optimal Abstractions. Various techniques have been proposed to find optimal ab-
stractions efficiently that precisely analyze the query-related program parts only [Liang et al. 2011;
Zhang et al. 2014, 2013]. Our work is different from them as we aim for good-enough abstractions
with much smaller overheads. Zhang et al. [2013] suggested a counterexample-guided abstraction
refinement technique that iteratively refines an abstraction toward a desirable one in dataflow
analysis. This approach was improved further by Zhang et al. [2014], which can find desirable
abstractions in parametric program analysis written in Datalog. Liang et al. [2011] proposed an
efficient algorithm to find minimal abstractions that precisely analyze the components related to
queries only. In our work, we improved the algorithm by Liang et al. [2011] in terms of the size of
search space (Section 4.4).

7 CONCLUSION

In this paper, we presented a technique, Graphick, that automatically learns graph-based analysis
heuristics. Recently, designing heuristics on the graph representations of programs has been arisen
as a promising approach in pointer analysis. Graphick aims to automate the designing process
using a feature language and a learning algorithm. To demonstrate the performance of our approach,
we implemented it on top of the Doop pointer analysis framework for Java. The experimental
results show that Graphick successfully produces high-quality analysis heuristics that are as
competitive as the existing state-of-the-art heuristics designed manually by analysis experts. We
hope our work facilitates the recent development of graph-based heuristics for pointer analysis.
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